The role of high-throughput transcriptome analysis in metabolic engineering

  • Michael C. Jewett
  • Ana Paula Oliveira
  • Kiran Raosaheb Patil
  • Jens Nielsen


The phenotypic response of a cell results from a well orchestrated web of complex interactions which propagate from the genetic architecture through the metabolic flux network. To rationally design cell factories which carry out specific functional objectives by controlling this hierarchical system is a challenge. Transcriptome analysis, the most mature high-throughput measurement technology, has been readily applied in strain improvement programs in an attempt to identify genes involved in expressing a given phenotype. Unfortunately, while differentially expressed genes may provide targets for metabolic engineering, phenotypic responses are often not directly linked to transcriptional patterns. This limits the application of genome-wide transcriptional analysis for the design of cell factories. However, improved tools for integrating transcriptional data with other high-throughput measurements and known biological interactions are emerging. These tools hold significant promise for providing the framework to comprehensively dissect the regulatory mechanisms that identify the cellular control mechanisms and lead to more effective strategies to rewire the cellular control elements for metabolic engineering.


metabolic engineering transcriptome gene expression bioinformatics systems biology data integration cell factory 


  1. [1]
    Patil, K. R., M. Akesson, and J. Nielsen (2004) Use of genome-scale microbial models for metabolic engineering.Curr. Opin. Biotechnol. 15: 64–69.Google Scholar
  2. [2]
    Nielsen, J. (2001) Metabolic engineering.Appl. Microbiol. Biotechnol. 55: 263–283.Google Scholar
  3. [3]
    Stephanopoulos, G., A. Aristidou, and J. Nielsen, (1998)Metabolic Engineering. Academic Press, San Diego USA.Google Scholar
  4. [4]
    Bulter, T., J. R. Bernstein, and J. C. Liao (2003) A perspective of metabolic engineering strategies: Moving up the systems hierarchy.Biotechnol. Bioeng. 84: 815–821.Google Scholar
  5. [5]
    Nielsen, J. (2003) It is all about metabolic fluxes.J. Bacteriol. 185: 7031–7035.Google Scholar
  6. [6]
    Bailey, J. E., A. Sburlati, V. Hatzimanikatis, K. Lee, W. A. Renner, and P. S. Tsai (1996) Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes.Biotechnol. Bioeng. 52: 109–121.Google Scholar
  7. [7]
    Martin, V. J., D. J. Pitera, S. T. Withers, J. D. Newman, and J. D. Keasling (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.Nat. Biotechnol. 21: 796–802.Google Scholar
  8. [8]
    Farmer, W. R. and J. C. Liao (2000) Improving lycopene production inEscherichia coli by engineering metabolic control.Nat. Biotechnol. 18: 533–537.Google Scholar
  9. [9]
    Ostergaard, S., L. Olsson, M. Johnston, and J. Nielsen (2000) Increasing galactose consumption bySaccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network.Nat. Biotechnol. 18: 1283–1286.Google Scholar
  10. [10]
    Bailey, J. E. (1999) Lessons from metabolic engineering for functional genomics and drug discovery.Nat. Biotechnol. 17: 616–618.Google Scholar
  11. [11]
    Bro, C. and J. Nielsen (2004) Impact of ‘ome’ analyses on inverse metabolic engineering.Metab. Eng. 6: 204–211.Google Scholar
  12. [12]
    Ihmels, J., R. Levy, and N. Barkai (2004) Principles of transcriptional control in the metabolic network ofSaccharomyces cerevisiae.Nat. Biotechnol. 22: 86–92.Google Scholar
  13. [13]
    Ideker, T., V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K. Eng, R. Bumgarner, D. R. Goodlett, R. Aebersold, and L. Hood (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.Science 292: 929–934.Google Scholar
  14. [14]
    Patil, K. R. and J. Nielsen (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology.Proc. Natl. Acad. Sci. USA 102: 2685–2689.Google Scholar
  15. [15]
    Price, N. D., J. A. Papin, C. H. Schilling, and B. O. Palsson (2003) Genome-scale microbial in silico models: The constraints-based approach.Trends Biotechnol. 21: 162–169.Google Scholar
  16. [16]
    Burgard, A. P., P. Pharkya, and C. D. Maranas (2003) OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization.Biotechnol. Bioeng. 84: 647–657.Google Scholar
  17. [17]
    Ideker, T., T. Galitski, and L. Hood (2001) A new approach to decoding life: Systems biology.Annu. Rev. Genomics Hum. Genet. 2: 343–372.Google Scholar
  18. [18]
    Nielsen, J. and L. Olsson (2002) An expanded role for microbial physiology in metabolic engineering and functional genomics: Moving towards systems biology.FEMS Yeast Res. 2: 175–181.Google Scholar
  19. [19]
    Weston, A. D. and L. Hood (2004) Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine.J. Proteome Res. 3: 179–196.Google Scholar
  20. [20]
    Stephanopoulos, G., H. Alper, and J. Moxley (2004) Exploiting biological complexity for strain improvement through systems biology.Nat. Biotechnol. 22: 1261–1267.Google Scholar
  21. [21]
    Brent, R. (2004) A partnership between biology and engineering.Nat. Biotechnol. 22: 1211–1214.Google Scholar
  22. [22]
    Hood, L. and R. M. Perlmutter (2004) The impact of systems approaches on biological problems in drug discovery.Nat. Biotechnol. 22: 1215–1217.Google Scholar
  23. [23]
    Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein (1998) Cluster analysis and display of genome-wide expression patterns.Proc. Natl. Acad. Sci. USA 95: 14863–14868.Google Scholar
  24. [24]
    Schena, M., R. A. Heller, T. P. Theriault, K. Konrad, E. Lachenmeier, and R. W. Davis (1998) Microarrays: Biotechnology’s discovery platform for functional genomics.Trends Biotechnol. 16: 301–306.Google Scholar
  25. [25]
    Lipshutz, R. J., S. P. A. Fodor, T. R. Gingeras, and D. J. Lockhart (1999) High density synthetic oligonucleotide arrays.Nat. Genetics 21: 20–24.Google Scholar
  26. [26]
    Hughes, T. R., M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend (2000) Functional discoveryvia a compendium of expression profiles.Cell 102: 109–126.Google Scholar
  27. [27]
    Lynch, M. D., R. T. Gill, and G. Stephanopoulos (2004) Mapping phenotypic landscapes using DNA micro-arrays.Metab. Eng. 6: 177–185.Google Scholar
  28. [28]
    Stafford, D. E. and G. Stephanopoulos (2001) Metabolic engineering as an integrating platform for strain development.Curr. Opin. Microbiol. 4: 336–340.Google Scholar
  29. [29]
    Kao, C. M. (1999) Functional genomic technologies: Creating new paradigms for fundamental and applied biology.Biotechnol. Prog. 15: 304–311.Google Scholar
  30. [30]
    de Lichtenberg, U., L. J. Jensen, S. Brunak, and P. Bork (2005) Dynamic complex formation during the yeast cell cycle.Science 307: 724–727.Google Scholar
  31. [31]
    Laub, M. T., H. H. McAdams, T. Feldblyum, C. M. Fraser, and L. Shapiro (2000) Global analysis of the genetic network controlling a bacterial cell cycle.Science 290: 2144–2148.Google Scholar
  32. [32]
    Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher (1998) Comprehensive identification of cell cycle-regulated genes of the yeastSaccharomyces cerevisiae by microarray hybridization.Mol. Biol. Cell 9: 3275–3297.Google Scholar
  33. [33]
    DeRisi, J. L., V. R. Iyer, and P. O. Brown (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale.Science 278: 680–686.Google Scholar
  34. [34]
    Gill, R. T., S. Wildt, Y. T. Yang, S. Ziesman, and G. Stephanopoulos (2002) Genome-wide screening for trait conferring genes using DNA microarrays.Proc. Natl. Acad. Sci. USA 99: 7033–7038.Google Scholar
  35. [35]
    Gill, R. T. (2003) Enabling inverse metabolic engineering through genomics.Curr. Opin. Biotechnol. 14: 484–490.Google Scholar
  36. [36]
    Gonzalez, R., H. Tao, J. E. Purvis, S. W. York, K. T. Shanmugam, and L. O. Ingram (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenicEscherichia coli: Comparison of KO11 (parent) to LY01 (resistant mutant).Biotechnol. Prog. 19: 612–623.Google Scholar
  37. [37]
    Lum, A. M., J. Huang, C. R. Hutchinson, and C. M. Kao (2004) Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays.Metab. Eng. 6: 186–196.Google Scholar
  38. [38]
    Wahlbom, C. F., R. R. Cordero Otero, W. H. van Zyl, B. Hahn-Hagerdal, and L. J. Jonsson (2003) Molecular analysis of aSaccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.Appl. Environ. Microbiol. 69: 740–746.Google Scholar
  39. [39]
    Askenazi, M., E. M. Driggers, D. A. Holtzman, T. C. Norman, S. Iverson, D. P. Zimmer, M. E. Boers, P. R. Blomquist, E. J. Martinez, A. W. Monreal, T. P. Feibelman, M. E. Mayorga, M. E. Maxon, K. Sykes, J. V. Tobin, E. Cordero, S. R. Salama, J. Trueheart, J. C. Royer, and K. T. Madden (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains.Nat. Biotechnol. 21: 150–156.Google Scholar
  40. [40]
    Oh, M. K. and J. C. Liao (2000) DNA microarray detection of metabolic responses to protein overproduction inEscherichia coli.Metab. Eng. 2: 201–209.Google Scholar
  41. [41]
    Sanford, K., P. Soucaille, G. Whited, and G. Chotani (2002) Genomics to fluxomics and physiomics-pathway engineering.Curr. Opin. Microbiol. 5: 318–322.Google Scholar
  42. [42]
    Daran-Lapujade, P., M. L. Jansen, J. M. Daran, W. van Gulik, J. H. de Winde, and J. T. Pronk (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism ofSaccharomyces cerevisiae. A chemostat culture study.J. Biol. Chem. 279: 9125–9138.Google Scholar
  43. [43]
    Tummala, S. B., S. G. Junne, and E. T. Papoutsakis (2003) Antisense RNA downregulation of coenzyme A transferase combined with alcohol aldehyde dehydrogenase overexpression leads to predominantly alcohologenicClostridium acetobutylicum fermentations.J. Bacteriol. 185: 3644–3653.Google Scholar
  44. [44]
    Yoon, S. H., M. J. Han, S. Y. Lee, K. J. Jeong, and J. S. Yoo (2003) Combined transcriptome and proteome analysis ofEscherichia coli during high cell density culture.Biotechnol. Bioeng. 81: 753–767.Google Scholar
  45. [45]
    Griffin, T. J., S. P. Gygi, T. Ideker, B. Rist, J. Eng, L. Hood, and R. Aebersold (2002) Complementary profiling of gene expression at the transcriptome and proteome levels inSaccharomyces cerevisiae.Mol. Cell. Proteomics 1: 323–333.Google Scholar
  46. [46]
    Schena, M., D. Shalon, R. W. Davis, and P. O. Brown (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science 270: 467–470.Google Scholar
  47. [47]
    Harrington, C. A., C. Rosenow, and J. Retief (2000) Monitoring gene expression using DNA microarrays.Curr. Opin. Microbiol. 3: 285–291.Google Scholar
  48. [48]
    Lockhart, D. J. and E. A. Winzeler (2000) Genomics, gene expression and DNA arrays.Nature 405: 827–836.Google Scholar
  49. [49]
    Knudsen, S. (2004)Guide to Analysis of DNA Microarray Data. John Wiley & Sons, Inc., Hoboken, NJ, USA.Google Scholar
  50. [50]
    Parada, G. and F. Acevedo (1983) On the relation of temperature and RNA content to the specific growth rate inSaccharomyces cerevisiae.Biotechnol. Bioeng. 25: 2785–2788.Google Scholar
  51. [51]
    Waldron, C. and F. Lacroute (1975) Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast.J. Bacteriol. 122: 855–865.Google Scholar
  52. [52]
    Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown (2000) Genomic expression programs in the response of yeast cells to environmental changes.Mol. Biol. Cell 11: 4241–4257.Google Scholar
  53. [53]
    Hayes, A., N. Zhang, J. Wu, P. R. Butler, N. C. Hauser, J. D. Hoheisel, F. L. Lim, A. D. Sharrocks, and S. G. Oliver (2002) Hybridization array technology coupled with chemostat culture: Tools to interrogate gene expression inSaccharomyces cerevisiae.Methods 26: 281–290.Google Scholar
  54. [54]
    Leung, Y. F. and D. Cavalieri (2003) Fundamentals of cDNA microarray data analysis.Trends Genet. 19: 649–659.Google Scholar
  55. [55]
    Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data.Nat. Genet. 29: 365–371.Google Scholar
  56. [56]
    Quackenbush, J. (2001) Computational analysis of microarray data.Nat. Rev. Genetics 2: 418–427.Google Scholar
  57. [57]
    Schadt, E. E., C. Li, C. Su, and W. H. Wong (2000) Analyzing high-density oligonucleotide gene expression array data.J. Cell. Biochem. 80: 192–202.Google Scholar
  58. [58]
    Workman, C., L. Jensen, H. Jarmer, R. Berka, L. Gautier. H. Nielser, H. H. Saxild, C. Nielsen, S. Brunak, and S. Knudsen (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments.Genome Biology 3: research0048.Google Scholar
  59. [59]
    Irizarry, R. A., B. Hobbs, E. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf, and T. P. Speed (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data.Biostatistics 4: 249–264.Google Scholar
  60. [60]
    Li, C. and W. H. Wong (2001) Model-based analysis of oligonucleotide arrays: Model validation, design issues and standard error application.Genome Biology 2: research0032.Google Scholar
  61. [61]
    Li, C. and W. H. Wong (2001) Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection.Proc. Natl. Acad. Sci. USA 98: 31–36.Google Scholar
  62. [62]
    Zhou, Y. and R. Abagyan (2002) Match-only integral distribution (MOID) algorithm for high-density oligonucleotide array analysis.BMC Bioinformatics 3: 3.Google Scholar
  63. [63]
    Naef, F., D. A. Lim, N. Patil, and M. Magnasco (2002) DNA hybridization to mismatched templates: A chip study.Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 65: 040902.Google Scholar
  64. [64]
    Chudin, E., R. Walker, A. Kosaka, S. X. Wu, D. Rabert, T. K. Chang, and D. E. Kreder (2002) Assessment of the relationship between signal intensities and transcript concentration for Affymetrix GeneChip arrays.Genome Biol. 3: Research0005.Google Scholar
  65. [65]
    Ideker, T., V. Thorsson, A. F. Siegel, and L. E. Hood (2000) Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data.J. Comput. Biol. 7: 805–817.Google Scholar
  66. [66]
    Storey, J. D. and R. Tibshirani (2003) Statistical significance for genome wide studies.Proc. Natl. Acad. Sci. USA 100: 9440–9445.Google Scholar
  67. [67]
    Taguchi, Y. H. and Y. Oono (2005) Relational patterns of gene expressionvia non-metric multidimensional scaling analysis.Bioinformatics 21: 730–740.Google Scholar
  68. [68]
    Yeung, K. Y. and W. L. Ruzzo (2001) Principal component analysis for clustering gene expression data.Bioinformatics 17: 763–774.Google Scholar
  69. [69]
    Alter, O., P. O. Brown, and D. Botstein (2000) Singular value decomposition for genome-wide expression data processing and modeling.Proc. Natl. Acad. Sci. USA 97: 10101–10106.Google Scholar
  70. [70]
    Sherlock, G. (2000) Analysis of large-scale gene expression data.Curr. Opin. Immunol. 12: 201–205.Google Scholar
  71. [71]
    Valafar, F. (2002) Pattern recognition techniques in microarray data analysis: A survey.Ann. NY Acad. Sci. 980: 41–64.CrossRefGoogle Scholar
  72. [72]
    Dharmadi, Y. and R. Gonzalez (2004) DNA microarrays: Experimental issues, data analysis, and application to bacterial systems.Biotechnol. Prog. 20: 1309–1324.Google Scholar
  73. [73]
    Grotkjaer, T. and J. Nielsen (2004) Enhancing yeast transcription analysis through integration of heterogeneous data.Curr. Genomics 5: 673–686.Google Scholar
  74. [74]
    Gibbons, F. D. and F. P. Roth (2002) Judging the quality of gene expression-based clustering methods using gene annotation.Genome Res. 12: 1574–1581.Google Scholar
  75. [75]
    Tamayo, P., D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander, and T. R. Golub (1999) Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation.Proc. Natl. Acad. Sci. USA 96: 2907–2912.Google Scholar
  76. [76]
    Cherepinsky, V., J. Feng, M. Rejali, and B. Mishra (2003) Shrinkage-based similarity metric for cluster analysis of microarray data.Proc. Natl. Acad. Sci. USA 100: 9668–9673.Google Scholar
  77. [77]
    Heyer, L. J., S. Kruglyak, and S. Yooseph (1999) Exploring expression data: Identification and analysis of coexpressed genes.Genome Res. 9: 1106–1115.Google Scholar
  78. [78]
    Hastie, T., R. Tibshirani, and J. Friedman (2001)The Elements of Statistical Learning-Data Mining, Inference, and Prediction. Springer-Verlag, New York, NY, USA.Google Scholar
  79. [79]
    MacKay, D. J. C. (2003)Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge, UK.Google Scholar
  80. [80]
    Blatt, M., S. Wiseman, and E. Domany (1996) Super-paramagnetic clustering of data.Phys. Rev. Lett. 76: 3251–3254.Google Scholar
  81. [81]
    Kaminski, N. and N. Friedman (2002) Practical approaches to analyzing results of microarray experiments.Am. J. Respir. Cell Mol. Biol. 27: 125–132.Google Scholar
  82. [82]
    Kerr, M. K. and G. A. Churchill (2001) Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments.Proc. Natl. Acad. Sci. USA 98: 8961–8965.Google Scholar
  83. [83]
    McShane, L. M., M. D. Radmacher, B. Freidlin, R. Yu, M. C. Li, and R. Simon (2002) Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data.Bioinformatics 18: 1462–1469.Google Scholar
  84. [84]
    Zhang, K. and H. Zhao (2000) Assessing reliability of gene clusters from gene expression data.Funct. Integr. Genomics 1: 156–173.Google Scholar
  85. [85]
    Zhu, J. and M. Q. Zhang (2000) Cluster, function and promoter: Analysis of yeast expression array.Pac. Symp. Biocomput. 479–490.Google Scholar
  86. [86]
    Wei, G. H., D. P. Liu, and C. C. Liang (2004) Charting gene regulatory networks: Strategies, challenges and perspectives.Biochem. J. 381: 1–12.Google Scholar
  87. [87]
    Pilpel, Y., P. Sudarsanam, and G. M. Church (2001) Identifying regulatory networks by combinatorial analysis of promoter elements.Nat. Genet. 29: 153–159.Google Scholar
  88. [88]
    Banerjee, N. and M. Q. Zhang (2002) Functional genomics as applied to mapping transcription regulatory networks.Curr. Opin. Microbiol. 5: 313–317.Google Scholar
  89. [89]
    Brown, M. P., W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, Jr., and D. Haussler (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines.Proc. Natl. Acad. Sci. USA 97: 262–267.Google Scholar
  90. [90]
    Miki, R., K. Kadota, H. Bono, Y. Mizuno, Y. Tomaru, P. Carninci, M. Itoh, K. Shibata, J. Kawai, H. Konno, S. Watanabe, K. Sato, Y. Tokusumi, N. Kikuchi, Y. Ishii, Y. Hamaguchi, I. Nishizuka, H. Goto, H. Nitanda, S. Satomi, A. Yoshiki, M. Kusakabe, J. L. DeRisi, M. B. Eisen, V. R. Iyer, P. O. Brown, M. Muramatsu, H. Shimada, Y. Okazaki, and Y. Hayashizaki (2001) Delineating developmental and metabolic pathwaysin vivo by expression profiling using the RIKEN set of 18,816 full-length enriched mouse cDNA arrays.Proc. Natl. Acad. Sci. 98: 2199–2204.Google Scholar
  91. [91]
    Bro, C., B. Regenberg, and J. Nielsen (2004) Genomewide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism.Biotechnol. Bioeng. 85: 269–276.Google Scholar
  92. [92]
    Grosu, P., J. P. Townsend, D. L. Hartl, and D. Cavalieri (2002) Pathway Processor: A tool for integrating whole-genome expression results into metabolic networks.Genome Res. 12: 1121–1126.Google Scholar
  93. [93]
    Zien, A., R. Kuffner, R. Zimmer, and T. Lengauer (2000) Analysis of gene expression data with pathway score.Proc. Int. Conf. Intell. Syst. Mol. Biol. 8: 407–417.Google Scholar
  94. [94]
    Pavlidis, P., D. P. Lewis and W. S. Noble (2002) Exploring gene expression data with class scores.Pac. Symp. Biocomput. 474–485.Google Scholar
  95. [95]
    Nakao, M., H. Bono, S. Kawashima, T. Kamiya, K. Sato, S. Goto, and M. Kanehisa (1999) Genome-scale gene expression analysis and pathway reconstruction in KEGG.Genome Inform. Ser. Workshop Genome Inform. 10: 94–103.Google Scholar
  96. [96]
    Mateos, A., J. Dopazo, R. Jansen, Y. Tu, M. Gerstein, and G. Stolovitzky (2002) Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons.Genome Res. 12: 1703–1715.Google Scholar
  97. [97]
    Breitling, R., A. Amtmann, and P. Herzyk (2004) Graph-based iterative Group Analysis enhances microarray interpretation.BMC Bioinformatics 5: 100.Google Scholar
  98. [98]
    Jansen, R., D. Greenbaum, and M. Gerstein (2002) Relating whole-genome expression data with protein-protein interactions.Genome Res. 12: 37–46.Google Scholar
  99. [99]
    Schuster, S., D. A. Fell, and T. Dandekar (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks.Nat. Biotechnol. 18: 326–332.Google Scholar
  100. [100]
    Stelling, J., S. Klamt, K. Bettenbrock, S. Schuster, and E. D. Gilles (2002) Metabolic network structure determines key aspects of functionality and regulation.Nature 420: 190–193.Google Scholar
  101. [101]
    Cakir, T., B. Kirdar, and K. O. Ulgen (2004) Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks.Biotechnol. Bioeng. 86: 251–260.Google Scholar
  102. [102]
    Pandey, R., R. K. Guru, and D. W. Mount (2004) Pathway miner: Extracting gene association networks from molecular pathways for predicting the biological significance of gene expression microarray data.Bioinformatics 20: 2156–2158.Google Scholar
  103. [103]
    Jeong, H., B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabasi (2000) The large-scale organization of metabolic networks.Nature 407: 651–654.Google Scholar
  104. [104]
    Fell, D. A. and A. Wagner (2000) The small world of metabolism.Nat. Biotechnol. 18: 1121–1122.Google Scholar
  105. [105]
    Ideker, T., O. Ozier, B. Schwikowski, and A. F. Siegel (2002) Discovering regulatory and signalling circuits in molecular interaction networks.Bioinformatics 18: S233-S240.Google Scholar
  106. [106]
    Majewski, R. A. and M. M. Domach (1990) Simple constrained-optimization view of acetate overflow inE. coli.Biotechnol. Bioeng. 35: 732–738.Google Scholar
  107. [107]
    Burgard, A. P. and C. D. Maranas (2003) Optimization-based framework for inferring and testing hypothesized metabolic objective functions.Biotechnol. Bioeng. 82: 670–677.Google Scholar
  108. [108]
    Burgard, A. P., E. V. Nikolaev, C. H. Schilling, and C. D. Maranas (2004) Flux coupling analysis of genome-scale metabolic network reconstructions.Genome Res. 14: 301–312.Google Scholar
  109. [109]
    Pharkya, P., A. P. Burgard, and C. D. Maranas (2003) Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock.Biotechnol. Bioeng. 84: 887–899.Google Scholar
  110. [110]
    Segre, D., D. Vitkup, and G. M. Church (2002) Analysis of optimality in natural and perturbed metabolic networks.Proc. Natl. Acad. Sci. USA 99: 15112–15117.Google Scholar
  111. [111]
    Akesson, M., J. Forster, and J. Nielsen (2004) Integration of gene expression data into genome-scale metabolic models.Metab. Eng. 6: 285–293.Google Scholar
  112. [112]
    Covert, M. W., E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson (2004) Integrating high-throughput and computational data elucidates bacterial networks.Nature 429: 92–96.Google Scholar
  113. [113]
    Covert, M. W. and B. O. Palsson (2003) Constraints-based models: regulation of gene expression reduces the steady-state solution space.J. Theor. Biol. 221: 309–325.Google Scholar
  114. [114]
    Covert, M. W., C. H. Schilling, and B. Palsson (2001) Regulation of gene expression in flux balance models of metabolism.J. Theor. Biol. 213: 73–88.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Michael C. Jewett
    • 1
  • Ana Paula Oliveira
    • 1
  • Kiran Raosaheb Patil
    • 1
  • Jens Nielsen
    • 1
  1. 1.Center for Microbial Biotechnology, BioCentrum-DTUTechnical University of DenmarkLyngbyDenmark

Personalised recommendations