Annals of Nuclear Medicine

, Volume 16, Issue 8, pp 515–525

Clinical application of positron emission tomography for diagnosis of dementia



Clinical applications of PET studies for dementia are reviewed in this paper. At the mild and moderate stages of Alzheimer’s disease (AD), glucose metabolism is reduced not only in the parietotemporal region but also in the posterior cingulate and precuneus. At the advanced stage of AD, there is also a metabolic reduction in the frontal region. In AD patients, glucose metabolism is relatively preserved in the pons, sensorimotor cortices, primary visual cortices, basal ganglia, thalamus and cerebellum. In patients with dementia with Lewy bodies, glucose metabolism in the primary visual cortices is reduced, and this reduction appears to be associated with the reduction pattern in AD patients. In patients with frontotemporal dementia, reduced metabolism in the frontotemporal region is the main feature of this disease, but reduced metabolism in the basal ganglia, and/or parietal metabolic reduction can be associated with the frontotemporal reduction. When corticobasal degeneration is associated with dementia, the reduction pattern of dementia is similar to the reduction pattern in AD and the hallmarks of diagnosing corticobasal degeneration associated with dementia are a reduced metabolism in the primary sensorimotor region and/or basal ganglia and an asymmetric reduction in the two hemispheres. FDG-PET is a very useful tool for the diagnosis of early AD and for the differential diagnosis of dementia. I also describe clinical applications of PET for the diagnosis of dementia in Japan.

Key words

positron emission tomogrpahy (PET) F-18 fluorodeoxyglucose (FDG) dementia Alzheimer disease glucose metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frackowiak RS, Pozzilli C, Legg NJ, Du Boulay GH, Marshall J, Lenzi GL, et al. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography.Brain 1981; 104: 753–778.PubMedCrossRefGoogle Scholar
  2. 2.
    Jagust WJ, Eberling JL, Richardson BC, Reed BR, Baker MG, Nordahl TE, et al. The cortical topography of temporal lobe hypometabolism in early Alzheimer’s disease.Brain Res 1993; 629: 189–198.PubMedCrossRefGoogle Scholar
  3. 3.
    Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, et al. Altered cerebral energy metabolism in Alzheimer’s disease: a PET study.J Nucl Med 1994; 35: 1–6.PubMedGoogle Scholar
  4. 4.
    Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional sterotactic surface projections of fluorine-18-FDG PET.J Nucl Med 1995; 36: 1238–1248.PubMedGoogle Scholar
  5. 5.
    Friston KJ, Ashburner J, Frith CD, Poline J-B, Heather JD, Frackowiak RSJ. Spatial registration and normalization of images.Human Brain Mapping 1995 3: 165–189.CrossRefGoogle Scholar
  6. 6.
    Ishii K, Willoch F, Minoshima S, Drzezga A, Ficaro EP, Cross DJ, et al. Statistical brain mapping of18F-FDG PET in Alzheimer’s disease: Validation of anatomic standardization for atrophied brain.J Nucl Med 2001; 42: 548–557.PubMedGoogle Scholar
  7. 7.
    Burdette JH, Minoshima S, Vander Borght T, Tran DD, Kuhl DE. Alzheimer disease: Improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections.Radiology 1996; 198: 837–843.PubMedGoogle Scholar
  8. 8.
    Ishii K, Sasaki M, Matsui M, Sakamoto S, Yamaji S, Hayashi N, et al. A diagnostic method for suspected Alzheimer’s disease using H2 15O positron emission tomography perfusion Z scores.Neuroadiology 2000; 42: 787–794.CrossRefGoogle Scholar
  9. 9.
    Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease.Lancet 1994; 344: 895.PubMedCrossRefGoogle Scholar
  10. 10.
    Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease.Ann Neurol 1997; 42: 85–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Paradoxical hippocampus perfusion in mild-to-moderate Alzheimer’s disease.J Nucl Med 1998; 39: 293–298.PubMedGoogle Scholar
  12. 12.
    Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Relatively preserved hippocampal glucose metabolism in mild Alzheimer’s disease.Dement Geriatr Cogn Disord 1998; 9: 317–322.PubMedCrossRefGoogle Scholar
  13. 13.
    Monoshima S, Frey KA, Foster NL, Kuhl DE. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis.J Comput Assist Tomogr 1995; 19: 541–547.CrossRefGoogle Scholar
  14. 14.
    Ishii K, Kitagaki H, Kono M, Mori E. Decreased medial temporal oxygen metabolism in Alzheimer’s disease shown by PET.J Nucl Med 1996; 37: 1159–1165.PubMedGoogle Scholar
  15. 15.
    Ishii K, Yamaji S, Mori E. Cerebellar metabolic reduction in Alzheimer’s disease and data normalization.J Nucl Med [letter] 1998; 39: 375–376.Google Scholar
  16. 16.
    Kumar A, Schapiro MB, Grady C, Haxby JV, Wagner E, Salerno JA, et al. High-resolution PET studies in Alzheimer’s disease.Neuropsychopharm 1991; 4: 35–46.Google Scholar
  17. 17.
    Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K, et al. Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease.J Nucl Med 1997; 38: 925–928.PubMedGoogle Scholar
  18. 18.
    Mielke R, Herholz K, Grond M, Kessler J, Heiss WD. Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type.Neurobiol Aging 1992; 13: 93–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Yasuno F, Imamura T, Hirono N, Ishii K, Sasaki M, Ikejiri Y, et al. Age at onset and regional cerebral glucose metabolism in Alzheimer’s disease.Dement Geriatr Cogn Disord 1998; 9: 63–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Sakamoto S, Ishii K, Sasaki M, Hosaka K, Mori T, Matsui M, et al. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease.J Neurol Sci 2002; 200: 27–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E.N Engl J Med 1996; 334: 752–758.PubMedCrossRefGoogle Scholar
  22. 22.
    Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease.Proc Natl Acad Sci USA 2000; 97: 6037–6042.PubMedCrossRefGoogle Scholar
  23. 23.
    Corder EH, Jelic V, Basun H, Lannfelt L, Valind S, Winblad B, et al. No difference in cerebral glucose metabolism in patients with Alzheimer disease and differeing apolipoprotein E genotypes.Arch Neurol 1997; 54: 273–277.PubMedGoogle Scholar
  24. 24.
    Hirono N, Mori E, Yasuda M, Ishii K, Ikejiri Y, Imaura T, et al. Lack of association of apolipoprotein E e4 allele dose with cerebral glucose metabolism in Alzheimer disease.Alzheimer Dis Assoc Dis 1998; 12: 362–367.CrossRefGoogle Scholar
  25. 25.
    Bencherif B, Endres CJ, Musachio JL, Villalobos A, Hilton J, Scheffel U, et al. PET imaging of brain acetylcholin-esterase using [11C]CP-126,998, a brain, selective enzyme inhibitor.Synapse 2002; 45: 1–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Shinotoh H, Aotsuka A, Fukushi K, Nagatsuka S, Tanaka N, Ota T, et al. Effect of donepezil on brain acetylcholin-esterase activity in patients with AD measured by PET.Neurology 2001; 56: 408–410.PubMedGoogle Scholar
  27. 27.
    Kuhl DE, Minoshima S, Frey KA, Foster NL, Kilborn MR, Koeppe RA. Limited donepezil inhibition of acetylcho-linesterase measured with positron emission tomography in living Alzheimer cerebral cortex.Ann Neurol 2000; 48: 391–395.PubMedCrossRefGoogle Scholar
  28. 28.
    Powers WJ, Perlmutter JS, Videen TO, Herscovitch P, Griffeth LK, Royal HD, et al. Blinded clinical evaluation of positron emission tomography for diagnosis of probable Alzheimer’s disease.Neurology 1992; 42: 765–770.PubMedGoogle Scholar
  29. 29.
    Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Decreased posterior cingulate perfusion in mild Alzheimer’s disease shown by H2 15O-PET.Eur J Nucl Med 1997; 24: 670–673.PubMedGoogle Scholar
  30. 30.
    McKeith IG, Galasko D, Kosaka K, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the consortium on DLB international workshop.Neurology 1996; 47: 1113–1124.PubMedGoogle Scholar
  31. 31.
    Albin RL, Minoshima S, D’Amato CJ, Frey KA, Kuhl DA, Sima AAF. Fluorodeoxyglucose positron emission tomography in diffuse Lewy body disease.Neurology 1996; 47: 462–466.PubMedGoogle Scholar
  32. 32.
    Borght VT, Minoshima S, Giordani B, et al. Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity.J Nucl Med 1997; 38: 797–802.Google Scholar
  33. 33.
    Imamura T, Ishii K, Sasaki M, Kitagaki H, Yamaji S, Hirono N, et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease: a comparative study using positron emission tomography.Neurosci Lett 1997; 235: 49–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Ishii K, Imamura T, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease.Neurology 1998; 51: 125–130.PubMedGoogle Scholar
  35. 35.
    Perry EK, Haroutunian V, Davis KL, Levy R, Lantos P, Eagger S, et al. Neocortical cholinergic activities differentiate Lewy body dementia from classical Alzheimer’s disease.Neuro Report 1994; 5: 747–749.Google Scholar
  36. 36.
    Perry RH, Irving D, Blessed G, Fairbaim, A, Perry EK. Senile dementia of Lewy body type. A clinically and neuropathologically distinct form of Lewy body dementia in the elderly.J Neurol Sci 1990; 95: 119–139.PubMedCrossRefGoogle Scholar
  37. 37.
    Brun A, Englund B, Gustafson L, Passant U, Mann DMA, Neary D, et al. Clinical and neuropathological criteria for frontotemporal dementia.J Neurol Neurosurg Psychiatry 1994; 57: 416–418.CrossRefGoogle Scholar
  38. 38.
    Neary D, Snowden, JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobal degeneration: a consensus on clinical diagnostic criteria.Neurology 1998; 51: 1546–1554.PubMedGoogle Scholar
  39. 39.
    Ishii K, Sakamoto S, Sasaki M, Kitagaki H, Yamaji S, Hashimoto M, et al. Cerebral glucose metabolism in patients with frontotemporal dementia.J Nucl Med 1998; 39: 1875–1878.PubMedGoogle Scholar
  40. 40.
    Lang AE, Riley DE, Bergeron C. Cortical-basal ganglionic degeneration; in; Calne DB (ed):Neurodegenerative Disease. Philadelphia; Saunders, 1994; 877–894.Google Scholar
  41. 41.
    Eidelberg D, Dhawan V, Moeller JR, Sidtis JJ, Ginos JZ, Strother SC, et al. The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography.J Neurol Neurosurg Psychiatry 1991; 54: 856–862.PubMedCrossRefGoogle Scholar
  42. 42.
    Blin J, Vidailhet MJ, Pillon B, Dubois B, Feve JR, Agid Y. Corticobasal degeneration: decreased and asymmetrical glucose consumption as studied with PET.Mov Disord 1992; 7: 348–354.PubMedCrossRefGoogle Scholar
  43. 43.
    Nagahama Y, Fukuyama H, Turjanski N, Kennedy A, Yamauchi H, Ouchi Y, et al. Cerebral glucose metabolism in corticobasal degeneration: comparison with progressive supranuclear palsy and normal controls.Mov Disord 1997; 12: 691–696.PubMedCrossRefGoogle Scholar
  44. 44.
    Hirono N, Mori E, Ishii K, Imamura T, Tanimukai S, Kazui H, et al. Neuroral substrates for semantic memory: A positron emission tomography study in Alzheimer’s disease.Dement Geriatr Cogn Disord 2001; 12: 15–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Blin J, Baron JC, Dubois B, Pillon B, Cambon H, Cambier J, et al. Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and clinicometabolic correlations.Arch Neurol 1990; 47: 747–752.PubMedGoogle Scholar
  46. 46.
    Hosaka K, Ishii K, Sakamoto S, Mori T, Sasaki M, Hirono N, et al. Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration.J Neurol Sci 2002; 199: 67–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Grünwald F, Pohl C, Bender H, Hartmann A, Menzel C, Ruhlmann J, et al.18F-fluorodeoxyglucose-PET and99mTc-bicisate-SPECT in Creutzfeldt-Jakob disease.Ann Nucl Med 1996; 10: 131–134.PubMedGoogle Scholar
  48. 48.
    Ogawa T, Inugami A, Fujita H, Hatazawa J, Shimosegawa E, Kanno I, et al. Serial positron emission tomography with fluorodeoxyglucose F 18 in Creutzfeldt-Jakob disease.Am J Neuroradiol 1995; 16 (4 Suppl): 978–981.PubMedGoogle Scholar
  49. 49.
    Goldman S, Laird A, Flament-Durand J, Luxen A, Bidaut LM, Stanus E, et al. Positron emission tomography and histopathology in Creutzfeldt-Jakob disease.Neurology 1993; 43: 1828–1830.PubMedGoogle Scholar
  50. 50.
    Henkel K, Zerr I, Hertel A, Gratz KF, Schroter A, Tschampa HJ, et al. Positron emission tomography with [18F]FDG in the diagnosis of Creutzfeldt-Jakob disease (CJD).J Neurol 2002; 249: 699–705.PubMedCrossRefGoogle Scholar
  51. 51.
    Na DL, Suh CK, Choi SH, Moon HS, Seo DW, Kim SE, et al. Diffusion-weighted magnetic resonance imaging in probable Creutzfeldt-Jakob disease: a clinical-anatomic correlation.Arch Neurol 1999; 56: 951–957.PubMedCrossRefGoogle Scholar
  52. 52.
    Samson Y, Baron JC, Feline A, Bories J, Crouzel C. Local cerebral glucose utilization in chronic alcoholics; a positron tomography study.J Neurol Neurosurg Psychiatry 1986; 49: 1165–1170.PubMedCrossRefGoogle Scholar
  53. 53.
    Fazio F, Perani D, Gilardi MC, Colombo F, Cappa SF, Vallar G, et al. Metabolic impairment in human amnesia: A PET study of memory Networks.J Cereb, Blood Flow Metab 1992; 12: 353–358.Google Scholar
  54. 54.
    Matsuda K, Yamaji S, Ishii K, Sasaki M, Sakamoto S, Kitagaki H, et al. Regional cerebral blood flow and oxygen metabolism in a patient with Korsakoff syndrome.Ann Nucl Med 1997; 11: 33–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Jagust WJ, Friedland RP, Budinger TF. Positron emission tomography with [18F]fluorodeoxyglucose differentiates normal pressure hydrocephalus from Alzheimer-type dementia.J Neurol Neurosurg Psychiatry 1985; 48: 1091–1096.PubMedCrossRefGoogle Scholar
  56. 56.
    Tedeschi E, Hasselbalch SG, Waldemar G, Juhler M, Hogh P, Holm S, et al. Heterogeneous cerebral glucose metabolism in normal pressure hydrocephalus.J Neurol Neurosurg Psychiatry 1995; 59: 608–615.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  1. 1.Department of Radiology and Nuclear MedicineHyogo Brain and Heart CenterHimeji, HyogoJapan

Personalised recommendations