Annals of Nuclear Medicine

, Volume 17, Issue 2, pp 79–89 | Cite as

PET studies in dementia

Review

Abstract

Measurement of local cerebral glucose metabolism (lCMRGlc) by positron emission tomography (PET) and18F-2-fluoro-2-deoxy-d-glucose (FDG) has become a standard technique during the past 20 years and is now available at many university hospitals in all highly developed countries. Many studies have documented a close relation between lCMRGlc and localized cognitive functions, such as language and visuoconstructive abilities. Alzheimer’s disease (AD) is characterized by regional impairment of cerebral glucose metabolism in neocortical association areas (posterior cingulate, temporoparietal and frontal multimodal association cortex), whereas primary visual and sensorimotor cortex, basal ganglia, and cerebellum are relatively well preserved. In a multicenter study comprising 10 PET centers (Network for Efficiency and Standardisation of Dementia Diagnosis, NEST-DD) that employed an automated voxel-based analysis of FDG PET images, the distinction between controls and AD patients was 93% sensitive and 93% specific, and even in very mild dementia (at MMSE 24 or higher) sensitivity was still 84% at 93% specificity. Significantly abnormal metabolism in mild cognitive deficit (MCI), indicates a high risk to develop dementia within the next two years. Reduced neocortical glucose metabolism can probably be detected with FDG PET in AD on average one year before onset of subjective cognitive, impairment. In addition to glucose metabolism, specific tracers for dopamine synthesis (18F-F-DOPA), and for (11C-MP4A) are of interest for differentiation among dementia subtypes. Cortical acetylcholine esterase activity (AChE) activity is significantly lower in patients with AD or with dementia with Lewy bodies (DLB) than in age-matched normal controls. In LBD there is also impairment of dopamine synthesis, similar to Parkinson disease.

Key words

PET dementia multicenter study automated image analysis Alzheimer disease glucose metabolism acetylcholine dopamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, Dekosky ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology.Neurology 2001; 56 (9): 1133–1142.PubMedGoogle Scholar
  2. 2.
    Frackowiak RS, Magistretti PJ, Shulman RG, Altman JS, Adams M. Neuroenergetics: Relevance for functional brain imaging. Strasbourg: Human Frontier Science Program; 2001.Google Scholar
  3. 3.
    Sokoloff L. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. [Review]J Cereb Blood Flow Metab 1981; 1 (1): 7–36.PubMedGoogle Scholar
  4. 4.
    Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, et al. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activityJ Neurochem 1980; 34 (1): 213–215.PubMedCrossRefGoogle Scholar
  5. 5.
    Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity.Proc Natl Acad Sci USA 1998; 95 (1): 316–321.PubMedCrossRefGoogle Scholar
  6. 6.
    Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, Di Chiro G. Alzheimer’s disease: focal cortical changes shown by positron emission tomography.Neurology 1983; 33 (8): 961–965.PubMedGoogle Scholar
  7. 7.
    Herholz K. FDG PET and differential diagnosis of dementia.Alzheimer Disease & Associated Disorders 1995; 9 (1): 6–16.CrossRefGoogle Scholar
  8. 8.
    Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer Dementia and Controls by Automated Analysis of Multicenter FDG PET.Neuroimage 2002; 17: 302–316.PubMedCrossRefGoogle Scholar
  9. 9.
    Zuendorf G, Kerrouche N, Herholz K, Baron JC. An efficient principal component analysis for multivariate 3D voxelbased mapping of brain functional imaging data sets as applied to FDG-PET and normal aging.Hum Brain Mapp 2003; 18: 13–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease.Ann Neurol 1997; 42 (1): 85–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain.Nat Rev Neurosci 2001; 2 (10): 685–694.PubMedCrossRefGoogle Scholar
  12. 12.
    Burdette JH, Minoshima S, Vander Borght T, Tran, DD, Kuhl DE. Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections.Radiology 1996; 198 (3): 837–843.PubMedGoogle Scholar
  13. 13.
    Signorini M, Paulesu E, Friston K, Perani D, Colleluori A, Lucignani G, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: A clinical validation of statistical parametric mapping.Neuroimage 1999; 9 (1): 63–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Ishii K, Willock F, Minoshima S, Drzezga A, Ficaro EP, Cross DJ, et al. Statistical brain mapping of18F-FDG PET in Alzheimer’s disease: validation of anatomic standardization for atrophied brains.J Nucl Med 2001; 42 (4): 548–557.PubMedGoogle Scholar
  15. 15.
    Salmon E, Collette F, Degueldre C, Lemaire C, Franck G. Voxel-based analysis of confounding effects of age and dementia severity on cerebral metabolism in Alzheimer’s disease.Hum Brain Mapp 2000; 10 (1): 39–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories.Neurobiol Aging 1997; 18 (4): 351–357.PubMedCrossRefGoogle Scholar
  17. 17.
    Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment.Arch Neurol 2001; 58 (12): 1985–1992.PubMedCrossRefGoogle Scholar
  18. 18.
    McKhann G, Drachman D, Folstein MF, Katzman R, Price, D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease.Neurology 1984; 34: 939–944.PubMedGoogle Scholar
  19. 19.
    Herholz K, Nordberg A, Salmon E, Perani D, Kessler J, Mielke R, et al. Metabolic impairment of association cortex predicts progression in Alzheimer’s disease: a prospective multicenter positron emission tomography (PET) study.Eur J Neurol 1998; 5 (Suppl 3): S24.Google Scholar
  20. 20.
    Arnaiz E, Jelic V, Almkvist O, Wahlund LO, Winblad B, Valind S, et al. Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment.Neuroreport 2001; 12 (4): 851–855.PubMedCrossRefGoogle Scholar
  21. 21.
    Drzezga A, Lautenschlager N, Minoshima S, Spiegel S, Kurz A, Schwaiger M. Early identification of patients with Alzheimer’s disease in a MCI group using F-18 FDG PET.J Cereb Blood Flow Metab 2001; 21 (Suppl): S426.Google Scholar
  22. 22.
    Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J. Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease.Proc Natl Acad Sci USA 2001; 98 (6): 3334–3339.PubMedCrossRefGoogle Scholar
  23. 23.
    Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E.N Engl J Med 1996; 334 (12): 752–758.PubMedCrossRefGoogle Scholar
  24. 24.
    de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Prediction of cognitive decline in normal elderly subjects with 2-F-18-fluoro-2-deoxy-d-glucose positron-emission tomography (FDGPET).Proc Natl Acad Sci USA 2001; 98 (19): 10966–10971.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamaguchi S, Meguro K, Itoh M, Hayasaka C, Shimada M, Yamazaki H, et al. Decreased cortical glucose metabolism correlates with hippocampal atrophy in Alzheimer’s disease as shown by MRI and PET.J Neurol Neurosurg Psychiatry 1997; 62 (6): 596–600.PubMedCrossRefGoogle Scholar
  26. 26.
    Wilson RS, Barnes LL, Mendes de Leon CF, Aggarwal NT, Schneider JS, Bach J, et al. Depressive symptoms, cognitive decline, and risk of AD in older persons.Neurology 2002; 59 (3): 364–370.PubMedGoogle Scholar
  27. 27.
    Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness.Am J Psychiatry 1999; 156 (5): 675–682.PubMedGoogle Scholar
  28. 28.
    Hirono N, Mori E, Ishii K, Ikejiri Y, Imamura T, Shimomura T, et al. Frontal lobe hypometabolism and depression in Alzheimer’s disease.Neurology 1998; 50 (2): 380–383.PubMedGoogle Scholar
  29. 29.
    Herholz K, Nordberg A, Salmon E, Perani D, Kessler J, Mielke R, et al. Impairment of neocortical metabolism predicts progression in Alzheimer’s disease.Dement Geriatr Cogn Disord 1999; 10 (6): 494–504.PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar A, Newberg A, Alavi A, Berlin J, Smith R, Reivich M. Regional cerebral glucose metabolism in late-life depression and Alzheimer disease: a preliminary positron emission tomography study.Proc Natl Acad Sci USA 1993; 90 (15): 7019–7023.PubMedCrossRefGoogle Scholar
  31. 31.
    Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria.Neurology 1998; 51 (6): 1546–1554.PubMedGoogle Scholar
  32. 32.
    Kertesz A, Munoz D. Pick’s disease, frontotemporal dementia, and Pick complex: emerging concepts.Arch Neurol 1998; 55 (3): 302–304.PubMedCrossRefGoogle Scholar
  33. 33.
    Lindau M, Almkvist O, Kushi J, Boone K, Johansson SE, Wahlund LO, et al. First symptoms—frontotemporal dementia versus Alzheimer’s disease.Dement Geriatr Cogn Disord 2000; 11 (5): 286–293.PubMedCrossRefGoogle Scholar
  34. 34.
    van Swieten JC, Stevens M, Rosso SM, Rizzu P, Joosse M, de Koning I, et al. Phenotypic variation in hereditary frontotemporal dementia with tau mutations.Ann Neurol 1999; 46 (4): 617–626.PubMedCrossRefGoogle Scholar
  35. 35.
    Hosaka K, Ishii K, Sakamoto S, Mori T, Sasaki M, Hirono N, et al. Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration.J Neurol Sci 2002; 199 (1–2): 67–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Feany MB, Mattiace LA, Dickson DW. Neuropathologic overlap of progressive supranuclear palsy, Pick’s disease and corticobasal degeneration.J Neuropathol Exp Neurol 1996; 55 (1): 53–67PubMedCrossRefGoogle Scholar
  37. 37.
    Karbe H, Grond M, Huber M, Herholz K, Kessler J, Heiss WD. Subcortical damage and cortical dysfunction in progressive supranuclear palsy demonstrated by positron emission tomography.J Neurol 1992; 239 (2): 98–102.PubMedCrossRefGoogle Scholar
  38. 38.
    Soong B, Liu R, Wu L, Lu Y, Lee H. Metabolic characterization of spinocerebellar ataxia type 6.Arch Neurol 2001; 58 (2): 300–304.PubMedCrossRefGoogle Scholar
  39. 39.
    Volkow ND, Hitzemann R, Wang GJ, Fowler JS, Wolf AP, Dewey SL, et al. Long-term frontal brain metabolic changes in cocaine abusers.Synapse 1992; 11 (3): 184–190.PubMedCrossRefGoogle Scholar
  40. 40.
    Erkinjuntti T, Ostbye T, Steenhuis R, Hachinski V. The effect of different diagnostic criteria on the prevalence of dementia.N Engl J Med 1997; 337 (23): 1667–1674.PubMedCrossRefGoogle Scholar
  41. 41.
    Chui HC, Mack W, Jackson JE, Mungas D, Reed BR, Tinklenberg J, et al. Clinical criteria for the diagnosis of vascular dementia: a multicenter study of comparability and interrater reliability.Arch Neurol 2000; 57 (2): 191–196.PubMedCrossRefGoogle Scholar
  42. 42.
    Jellinger KA. The pathology of ischemic-vascular dementia: An update.J Neurol Sci 2002; 203-204: 153–157.PubMedCrossRefGoogle Scholar
  43. 43.
    Ikeda M, Hokoishi K, Maki N, Nebu A, Tachibana N, Komori K, et al. Increased prevalence of vascular dementia in Japan: a community-based epidemiological study.Neurology 2001; 57 (5): 839–844.PubMedGoogle Scholar
  44. 44.
    Mielke R, Herholz K, Grond M, Kessler J, Heiss WD. Severity of vascular dementia is related to volume of metabolically impaired tissue.Arch Neurol 1992; 49 (9): 909–913.PubMedGoogle Scholar
  45. 45.
    Sultzer DL, Mahler ME, Cummings JL, Van Gorp WG, Hinkin CH, Brown C. Cortical abnormalities associated with subcortical lesions in vascular dementia. Clinical and position emission tomographic findings.Arch Neurol 1995; 52 (8): 773–780.PubMedGoogle Scholar
  46. 46.
    Johnson KA, Mueller ST, Walshe TM, English RJ, Holman BL. Cerebral perfusion imaging in Alzheimer’s disease. Use of single photon emission computed tomography and iofetamine hydrochloride I-123.Arch Neurol 1987; 44 (2): 165–168.PubMedGoogle Scholar
  47. 47.
    Powers WJ, Perlmutter JS, Videen TO, Herscovitch P, Griffeth LK, Royal HD, et al. Blinded clinical evaluation of positron emission tomography for diagnosis of probable Alzheimer’s disease.Neurology 1992; 42 (4): 765–770.PubMedGoogle Scholar
  48. 48.
    Frackowiak RS, Pozzilli C, Legg NJ, Du Boulay GH, Marshall J, Lenzi GL, et al. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography.Brain 1981; 104 (Pt 4): 753–778.PubMedCrossRefGoogle Scholar
  49. 49.
    Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, et al. Altered cerebral energy metabolism in Alzheimer’s disease: a PET study.J Nucl Med 1994; 35 (1): 1–6.PubMedGoogle Scholar
  50. 50.
    Nagata K, Maruya H, Yuya H, Terashi H, Mito Y, Kato H, et al. Can PET data differentiate Alzheimer’s disease from vascular dementia?Ann NY Acad Sci 2000; 903: 252–261.PubMedCrossRefGoogle Scholar
  51. 51.
    Silverman DH, Small GW, Chang CY, Lu CS, Kung de Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome.JAMA 2001; 286 (17): 2120–2127.PubMedCrossRefGoogle Scholar
  52. 52.
    Herholz K, Schopphoff H, Schmidt M, Mielke R, Eschner W, Scheidhauer K, et al. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer disease.J Nucl Med 2002; 43 (1): 21–26.PubMedGoogle Scholar
  53. 53.
    Mielke R, Pietrzyk U, Jacobs A, Fink GR, Ichimiya A, Kessler J, et al. HMPAO SPET and FDG PET in Alzheimer’s disease and vascular dementia: comparison of perfusion and metabolic pattern.Eur J Nucl Med 1994; 21 (10): 1052–1060.PubMedCrossRefGoogle Scholar
  54. 54.
    Messa C, Perani D, Lucignani G, Zenorini A, Zito F, Rizzo G, et al. High-resolution technetium-99m-HMPAO SPECT in patients with probable Alzheimer’s disease: comparison with fluorine-18-FDG PET.J Nucl Med 1994; 35 (2): 210–216.PubMedGoogle Scholar
  55. 55.
    Silverman DHS, Cummings JL, Small GW, Gambhir SS, Chen W, Czernin J, et al. Added Clinical Benefit of Incorporating 2-Deoxy-2-[18F]Fluoro-d-Glucose with Positron Emission Tomography into the Clinical Evaluation of Patients with Cognitive Impairment.Molecular Imaging & Biology 2002; 4 (4): 283–293.CrossRefGoogle Scholar
  56. 56.
    Okamura N, Arai H, Maruyama M, Higuchi M, Matsui T, Tanji H, et al. Combined Analysis of CSF Tau Levels and [(123)I]Iodoamphetamine SPECT in Mild Cognitive Impairment: Implications for a Novel Predictor of Alzheimer’s Disease.Am J Psychiatry 2002; 159 (3): 474–476.PubMedCrossRefGoogle Scholar
  57. 57.
    Huang C, Wahlund LO, Svensson L, Winblad B, Julin P. Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment.BMC Neurol 2002; 2 (1): 9.PubMedCrossRefGoogle Scholar
  58. 58.
    Minoshima S, Foster NL, Sima AA, Frey KA, Albin RL, Kuhl DE. Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation.Ann Neurol 2001; 50 (3): 358–365.PubMedCrossRefGoogle Scholar
  59. 59.
    Ishii K, Imamura T, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease.Neurology 1998; 51 (1): 125–130.PubMedGoogle Scholar
  60. 60.
    Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism.J Cereb Blood Flow Metab 1994; 14 (5): 783–801.PubMedGoogle Scholar
  61. 61.
    Brooks DJ. PET studies on the early and differential diagnosis of Parkinson’s disease.Neurology 1993; 43 (12 Suppl 6): S6–16.Google Scholar
  62. 62.
    Perry RH, Irving D, Blessed G, Fairbairn A, Perry EK. Senile dementia of Lewy body type. A clinically and neuropathologically distinct form of Lewy body dementia in the elderly.J Neurol Sci 1990; 95 (2): 119–139.PubMedCrossRefGoogle Scholar
  63. 63.
    Verghese J, Crystal HA, Dickson DW, Lipton RB. Validity of clinical criteria for the diagnosis of dementia with Lewy bodies.Neurology 1999; 53 (9): 1974–1982.PubMedGoogle Scholar
  64. 64.
    Jellinger KA. Morphological substrates of mental dysfunction in Lewy body disease: an update.J Neural Transm Suppl 2000; 59 (1–2): 185–212.PubMedGoogle Scholar
  65. 65.
    Holthoff-Detto VA, Kessler J, Herholz K, Bönner H, Pietrzyk U, Würker M, et al. Functional effects of striatal dysfunction in Parkinson disease.Arch Neurol 1997; 54: 145–150.PubMedGoogle Scholar
  66. 66.
    Ito K, Nagano-Saito A, Kato T, Arahata Y, Nakamura A, Kawasumi Y, et al. Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: a 6-[(18)F]fluolo-l-dopa PET study.Brain 2002; 125 (Pt 6): 1358–1365.PubMedCrossRefGoogle Scholar
  67. 67.
    Hu XS, Okamura N, Arai H, Higuchi M, Matsui T, Tashiro M, et al.18F-fluorodopa PET study of striatal dopamine uptake in the diagnosis of dementia with lewy bodies.Neurology 2000; 55 (10): 1575–1577.PubMedGoogle Scholar
  68. 68.
    Rinne JO, Ruottinen H, Bergman J, Haaparanta M, Sonninen P, Solin O. Usefulness of a dopamine transporter PET ligand[(18)F]beta-CFT in assessing disability in Parkinson’s disease.J Neurol Neurosurg Psychiatry 1999; 67 (6): 737–741.PubMedCrossRefGoogle Scholar
  69. 69.
    Vander Borght TM, Kilbourn MR, Koeppe RA, DaSilva JN, Carey JE, Kuhl DE, et al.In vivo imaging of the brain vesicular monoamine transporter.J Nucl Med 1995; 36 (12): 2252–2260.Google Scholar
  70. 70.
    Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction.Science 1982; 217 (4558): 408–414.PubMedCrossRefGoogle Scholar
  71. 71.
    Peny EK, Haroutunian V, Davis KL, Levy R, Lantos P, Eagger S, et al. Neocortical cholinergic activities differentiate Lewy body dementia from classical Alzheimer’s disease.Neuroreport 1994; 5 (7): 747–749.CrossRefGoogle Scholar
  72. 72.
    Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, et al. Pathological changes in the nucleus basalis of Meynert in Alzheimer’s and Parkinson’s disease.J Neurol Sci 1983; 59: 277–289.PubMedCrossRefGoogle Scholar
  73. 73.
    Mann DM, Yates PO, Marcyniuk B. The nucleus basalis of Meynert in multi-infarct (vascular) dementia.Acta Neuropathol (Berl) 1986; 71 (3–4): 332–337.CrossRefGoogle Scholar
  74. 74.
    Snyder SE, Tluczek L, Jewett DM, Nguyen TB, Kuhl DE, Kilbourn MR. Synthesis of 1-[11C]methylpiperidin-4-yl propionate ([11C]PMP) forin vivo measurements of acetyl-cholinesterase activity.Nucl Med Biol 1998; 25 (8): 751–754.PubMedCrossRefGoogle Scholar
  75. 75.
    Namba H, Irie T Fukushi K, Iyo M.In vivo measurement of acetylcholinesterase activity in the brain with a radioactive acetylcholine analog.Brain Research 1994; 667 (2): 278–282.PubMedCrossRefGoogle Scholar
  76. 76.
    Zündorf G, Herholz K, Lercher M, Wienhard K, Bauer B, Weisenbach S, Heiss W-D. PET functional parametric images of acetylcholine esterase activity without blood sampling. Senda M, Kimura Y, Herscovitch P, eds.Brain Imaging Using PET. San Diego, Ca.; Academic Press, 2002: 41–46.CrossRefGoogle Scholar
  77. 77.
    Herholz K, Lercher M, Wienhard K, Bauer B, Lenz O, Heiss W-D. PET measurement of cerebral acetylcholine esterase activity without blood sampling.Eur J Nucl Med 2001; 28: 472–477.PubMedCrossRefGoogle Scholar
  78. 78.
    Shinotoh H, Namba H, Fukushi K, Nagatsuka S, Tanaka N, Aotsuka A, et al. Progressive loss of cortical acetylcholinesterase activity in association with cognitive decline in Alzheimer’s disease: a positron emission tomography study.Ann Neurol 2000; 48 (2): 194–200.PubMedCrossRefGoogle Scholar
  79. 79.
    Herholz K, Bauer B, Wienhard K, Kracht L, Mielke R, Lenz O, et al.In-vivo measurements of regional acetylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism.J Neural Transm 2000; 12: 1457–1468.CrossRefGoogle Scholar
  80. 80.
    Perry EK, Irving D, Kerwin JM, McKeith IG, Thompson P, Collerton D, et al. Cholinergic transmitter and neurotrophic activities in Lewy body dementia: similarity to Parkinson’s and distinction from Alzheimer disease.Alzheimer Disease & Associated Disorders 1993; 7 (2): 69–79.CrossRefGoogle Scholar
  81. 81.
    Volkow ND, Ding YS, Fowler JS, Gatley SJ. Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer’s dementia.Biol Psychiatry 2001; 49 (3): 211–220.PubMedCrossRefGoogle Scholar
  82. 82.
    Sihver W, Langstrom B, Nordberg A. Ligands forin vivo imaging of nicotinic receptor subtypes in Alzheimer brain.Acta Neurol Scand Suppl 2000; 176: 27–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Bacskai BJ, Klunk WE, Mathis CA, Hyman BT. Imaging Amyloid-beta DepositsIn Vivo.J Cereb Blood Flow Metab 2002; 22 (9): 1035–1041.PubMedCrossRefGoogle Scholar
  84. 84.
    Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease.Am J Geriatr Psychiatry 2002; 10 (1): 24–35.PubMedCrossRefGoogle Scholar
  85. 85.
    Rapoport SI. Positron emission tomography in Alzheimer’s disease in relation to disease pathogenesis—a critical review.Cerebrovascular & Brain Metabolism Reviews 1991; 3 (4): 297–335.Google Scholar
  86. 86.
    Imamura T, Ishii K, Hirono N, Hashimoto M, Tanimukai S, Kazui H, et al. Occipital glucose metabolism in dementia with lewy bodies with and without parkinsonism: a study using positron emission tomography.Dement Geriatr Cogn Disord 2001; 12 (3): 194–197.PubMedCrossRefGoogle Scholar
  87. 87.
    Higuchi M, Tashiro M, Arai H, Okamura N, Hara S, Higuchi S, et al. Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies.Exp Neurol 2000; 162 (2): 247–256.PubMedCrossRefGoogle Scholar
  88. 88.
    Salmon E, Delbeuck X, Garraux G, Collette F, Herholz K, Kalbe E, et al. A predominant ventromedial frontopolar metabolic impairment demonstrated in frontotemporal dementia.J Neurol 2002; 249 (Suppl 1): 14.Google Scholar
  89. 89.
    Jauss M, Herholz K, Kracht L, Pantel J, Hartmann T, Jensen M, et al. Frontotemporal dementia: Clinical, neuroimaging, and molecular biological findings in 6 patients.European Archives of Psychiatry & Clinical Neuroscience 2001; 251: 225–231.CrossRefGoogle Scholar
  90. 90.
    Ishii K, Sakamoto S, Sasaki M, Kitagaki H, Yamaji S, Hashimoto M, et al. Cerebral glucose metabolism in patients with frontotemporal dementia.J Nucl Med 1998; 39 (11): 1875–1878.PubMedGoogle Scholar
  91. 91.
    Friedland RP, Koss E, Lemer A, Hedera P, Ellis W, Dronkers N, et al. Functional imaging, the frontal lobes, and dementia.Dementia 1993; 4 (3–4): 192–203.PubMedCrossRefGoogle Scholar
  92. 92.
    Hilker R, Voges J, Thiel A, Ghaemi M, Herholz K, Sturm V, et al. Deep brain stimulation of the subthalamic nucleus versus levodopa challenge in Parkinson’s disease: measuring the on- and off-conditions with FDG-PET.J Neural Transmission 2002; 10: 1257–1264.CrossRefGoogle Scholar
  93. 93.
    Berding G, Odin P, Brooks DJ, Nikkhah G, Matthies C, Peschel T, et al. Resting regional cerebral glucose metabolism in advanced Parkinson’s disease studied in the off and on conditions with [(18)F]FDG-PET.Mov Disord 2001; 16 (6): 1014–1022.PubMedCrossRefGoogle Scholar
  94. 94.
    Fukuda M, Mentis MJ, Ma Y, Dhawan V, Antonini A, Lang AE, et al. Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism.Brain 2001; 124 (Pt 8): 1601–1609.PubMedCrossRefGoogle Scholar
  95. 95.
    Su PC, Ma Y, Fukuda M, Mentis MJ, Tseng HM, Yen RF, et al. Metabolic changes following subthalamotomy for advanced Parkinson’s disease.Ann Neurol 2001; 50 (4): 514–520.PubMedCrossRefGoogle Scholar
  96. 96.
    Bohnen NI, Minoshima S, Giordani B, Frey KA, Kuhl DE. Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia.Neurology 1999; 52 (3): 541–546.PubMedGoogle Scholar
  97. 97.
    Eidelberg D, Moeller JR, Dhawan V, Sidtis JJ, Ginos JZ, Strother SC, et al. The metabolic anatomy of Parkinson’s disease: complementary [18F] fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies.Movement Disorders 1990; 5 (3): 203–213.PubMedCrossRefGoogle Scholar
  98. 98.
    Eidelberg D, Takikawa S, Moeller JR, Dhawan V, Redington K, Chaly T, et al. Striatal hypometabolism distinguishes striatonigral degeneration from Parkinson’s disease.Ann Neurol 1993; 33 (5): 518–527.PubMedCrossRefGoogle Scholar
  99. 99.
    Taniwaki T, Nakagawa M, Yamada T, Yoshida T, Ohyagi Y, Sasaki M, et al. Cerebral metabolic changes in early multiple system atrophy: a PET study.J Neurol Sci 2002; 200 (1–2): 79–84.PubMedCrossRefGoogle Scholar
  100. 100.
    Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging.J Neurol Neurosurg Psychiatry 2002; 73 (5): 517–523.PubMedCrossRefGoogle Scholar
  101. 101.
    Fulham MJ, Dubinsky RM, Pohnsky RJ, Brooks RA, Brown RT, Curras MT, et al. Computed tomography, magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in multiple system atrophy and pule autonomic failure.Clinical Autonomic Research 1991; 1 (1): 27–36.PubMedCrossRefGoogle Scholar
  102. 102.
    Gilman S, Koeppe RA, Junck L, Kluin KJ, Lohman M, St Laurent RT. Patterns of cerebral glucose metabolism detected with positron emission tomography differ in multiple system atrophy and olivopontocerebellar atrophy.Ann Neurol 1994; 36 (2): 166–175.PubMedCrossRefGoogle Scholar
  103. 103.
    Perani D, Bressi S, Testa D, Grassi F, Cortelli P, Gentrini S, et al. Clinical/metabolic correlations in multiple system atrophy. A fludeoxyglucose F 18 positron emission tomographic study.Arch Neurol 1995; 52 (2): 179–185.PubMedGoogle Scholar
  104. 104.
    Piccini P, de Yebenez J, Lees AJ, Ceravolo R, Turjanski N, Pramstaller P, et al. Familial progressive supranuclear palsy: detection of subclinical cases using18F-dopa and18fluorodeoxyglucose positron emission tomography.Arch Neurol 2001; 58 (11): 1846–1851.PubMedCrossRefGoogle Scholar
  105. 105.
    Blin J, Baron JC, Dubois B, Pillon B, Cambon H, Cambier J, et al. Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and clinicometabolic correlations.Arch Neurol 1990; 47 (7): 747–752.PubMedGoogle Scholar
  106. 106.
    Nagasawa H, Tanji H, Nomura H, Saito H, Itoyama Y, Kimura I, et al. PET study of cerebral glucose metabolism and fluorodopa uptake in patients with corticobasal degeneration.J Neurol Sci 1996; 139 (2): 210–217.PubMedCrossRefGoogle Scholar
  107. 107.
    Blin J, Vidailhet MJ, Pillon B, Dubois B, Feve JR, Agid Y. Corticobasal degeneration: decreased and asymmetrical glucose consumption as studied with PET.Movement Disorders 1992; 7 (4): 348–354.PubMedCrossRefGoogle Scholar
  108. 108.
    Eidelberg D, Dhawan V, Moeller JR, Sidtis JJ, Ginos JZ, Strother SC, et al. The metabolic landscape of corticobasal ganglionic degeneration: regional asymmetries studied with positron emission tomography.J Neurol Neurosurg Psychiatry 1991; 54 (10): 856–862.PubMedCrossRefGoogle Scholar
  109. 109.
    Gilman S, Junck L, Markel DS, Koeppe RA, Kluin KJ. Cerebral glucose hypermetabolism in Friedreich’s ataxia detected with positron emission tomography.Ann Neurol 1990; 28 (6): 750–757.PubMedCrossRefGoogle Scholar
  110. 110.
    Rudolf J, Grond M, Hilker R, Ghaemi M, Jacobs A, Heiss W. Relative sparing of the parietal cortex in cerebellar ataxia documented by positron emission tomography.Clinl Neurol Neurosurg 2000; 102 (4): 210–214.CrossRefGoogle Scholar
  111. 111.
    Leenders KL, Frackowiak RS, Quinn N, Marsden CD. Brain energy metabolism and dopaminergic function in Huntington’s disease measuredin vivo using positron emission tomography.Movement Disorders 1986; 1 (1): 69–77.PubMedCrossRefGoogle Scholar
  112. 112.
    Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, et al. PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline.Ann Neurol 1986; 20 (3): 296–303.PubMedCrossRefGoogle Scholar
  113. 113.
    Hayden MR, Martin WR, Stoessl AJ, Clark C, Hollenberg S, Adam MJ, et al. Positron emission tomography in the early diagnosis of Huntington’s disease.Neurology 1986; 36 (7): 888–894.PubMedGoogle Scholar
  114. 114.
    Mazziotta JC. Huntington’s disease: studies with structural imaging techniques and positron emission tomography.Semin Neurol 1989; 9 (4): 360–369.PubMedCrossRefGoogle Scholar
  115. 115.
    Baxter LR Jr, Mazziotta JC, Pahl JJ, Grafton ST, St George-Hyslop P, Haines JL, et al. Psychiatric, genetic, and positron emission tomographic evaluation of persons at risk for Huntington’s disease.Archives of General Psychiatry 1992; 49 (2): 148–154.PubMedGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  1. 1.Neurologische UniversitätsklinikMax-Planck-Institut für neurologische ForschungKölnGermany

Personalised recommendations