Journal of Soils and Sediments

, Volume 2, Issue 2, pp 91–99 | Cite as

Phytoremediation: European and American trends successes, obstacles and needs

  • Jean-Paul SchwitzguébelEmail author
  • Daniël van der Lelie
  • Alan Baker
  • David J. Glass
  • Jaco Vangronsveld
Review Articles


Phytoremediation is an emerging technology based on the use of green plants to remove, contain, inactivate or destroy harmful environmental pollutants. Recent developments in Europe and the USA show that the approach is somewhat different on both sides of the Atlantic. In Europe, phytoremediation has more basically been research driven and, based on the outcomes, applications have been envisaged. By contrast, the approach in the USA is more application and experience driven. In spite of a growing track record of commercial success, more demonstration projects are needed to prove that phytoremediation is effective in order to rigorously measure its underlying economics, and to expand its applications. More fundamental research is also required to better understand the complex interactions between pollutants, soil, plant roots and micro-organisms at the rhizosphere level, to increase the bioavailability of pollutants, to fully exploit the metabolic diversity of plants and, thus, to successfully implement this new green technology.


Constructed wetlands organic pollutants phytoextraction phytodegradation phytoremediation phytostabilization phytostimulation radionuclides toxic metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Glass DJ (1999): US and International Markets for Phyto- remediation, 1999–2000, D. Glass Associates, Inc, Needham, MA, USA. Homepage at Scholar
  2. [2]
    Schwitzguébel JP (2001): Hype or hope: the potential of phytoremediation as an emerging green technology. Remediation 11 (4) 63–78CrossRefGoogle Scholar
  3. [3]
    Dietz AC, Schnoor JL (2001): Advances in phytoremediation. Environmental Health Perspectives 109, 163–168CrossRefGoogle Scholar
  4. [4]
    McCutcheon SC, Rock SA (2001): Phytoremediation: state of the science conference and other developments. International Journal of Phytoremediation 3, 1–11CrossRefGoogle Scholar
  5. [5]
    Alexander M (2000): Aging, bioavailability, and overestima- tion of risk from environmental pollutants. Environmental Science and Technology 34, 4259–4265CrossRefGoogle Scholar
  6. [6]
    Vangronsveld J, van Asst F, Clijstcrs H (1995): Reclamation of a bare industrial area contaminated by non-ferrous metals:In situ metal immobilization and revegetation. Environmental Pollution 87, 51–59CrossRefGoogle Scholar
  7. [7]
    Vangronsveld J, Colpaert J, van Tichelen K (1996): Reclamation of a bare industrial area contaminated by non-ferrous metals: Physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environmental Pollution 94, 131–140CrossRefGoogle Scholar
  8. [8]
    Vangronsveld J, Mench M, Lepp NW, Boisson J, Ruttens A, Edwards R, Penny C, van der Lelie D (2000):In situ inactiva- tion and phytoremediation of metal- and metalloid contaminated soils: field experiments. In: Bioremediation of Contaminated Soils, pp. 859–884, Wise J, Trantolo D, Cichon E, Inyang H and Stotmeister U (eds) Marcel Dekker Inc, New YorkGoogle Scholar
  9. [9]
    Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997): Phytoremediation of soil metals. Current Opinion in Biotechnology 8, 279–284CrossRefGoogle Scholar
  10. [10]
    Corbisier P, Thiry E, Diels L (1996): Bacterial biosensors for the toxicity assessment of solid wastes. Environmental Toxicology and Water Quality 11, 171–177CrossRefGoogle Scholar
  11. [11]
    Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001): A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environmental Pollution 113, 19–26CrossRefGoogle Scholar
  12. [12]
    Mejare M, Bulow L (2001): Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology 19, 67–73CrossRefGoogle Scholar
  13. [13]
    Kraemer U, Chardonnens AN (2001): The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Applied Microbiology and Biotechnology 55, 661–672CrossRefGoogle Scholar
  14. [14]
    Grichko VP, Filby B, Glick BR (2000): Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. Journal of Biotechnology 81, 45–53CrossRefGoogle Scholar
  15. [15]
    Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000): Responses to cadmium in leaves of transformed poplars overexpressing g-glutamylcysteine synthetase. Physiologia Plantarum 109, 143–149CrossRefGoogle Scholar
  16. [16]
    Rugh CL (2001): Mercury detoxification with transgenic plants and other biotechnological breakthroughs for phytoremediation.In vitro Cellular and Developmental Biology - Plant 37, 321–325CrossRefGoogle Scholar
  17. [17]
    Meagher R (2000): Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology 3, 153–162CrossRefGoogle Scholar
  18. [18]
    Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000): Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proceedings of the National Academy of Sciences USA 97, 6287–6291CrossRefGoogle Scholar
  19. [19]
    Siciliano SD, Germida JJ (1998): Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environmental Review 6, 65–79CrossRefGoogle Scholar
  20. [20]
    Shilev SI, Ruso J, Puig A, Benlloch M, Jorrin J, Sancho E (2001): Rhizospheric bacteria promote sunflower (Helianthus annuus L.) plant growth and tolerance to heavy metals. Minerva Biotecnologica 13, 37–39Google Scholar
  21. [21]
    Oliveira RS, Zarzyki R, Manaia CM, Castro PML (2001): Influence of plant components on the degradation of 4- nitrophenol by a bacterial consortium isolated from the rhizosphere ofPhragmites australis. Minerva Biotecnologica 13, 27–32Google Scholar
  22. [22]
    Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001): The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. International Journal of Phytore-mediation 3, 173–187CrossRefGoogle Scholar
  23. [23]
    Newman LA, Doty SL, Gery KL, Heilman PE, Muiznieks I, Shang TQ, Siemieniec ST, Strand SE, Wang XP, Wilson AM, Gordon MP (1998): Phytoremediation of organic contaminants: a review of phytoremediation research at the University of Washington. Journal of Soil Contamination 7, 531–542CrossRefGoogle Scholar
  24. [24]
    Rebedea I (1997): An investigation into the use of synthetic zeolites forin situ land reclamation. PhD Thesis, Liverpool John Moores University, UKGoogle Scholar
  25. [25]
    Huang JW, Chen J, Cunningham SD (1997): Phytoextraction of lead from contaminated soils. In: Phytoremediation of Soil and Water Contaminants (Edited by Kruger EL, Anderson TA, Coats JR), ACS Symposium Series No. 664. American Chemical Society, Washington, DC, 283–298Google Scholar
  26. [26]
    De Haro A, Pujadas A, Polonio A, Font R, Velez D, Montoro R, Del Rio M (2000): Phytoremediation of the polluted soils after the toxic spill of the Aznalcollar mine by using wild species collectedin situ. Fresenius Environmental Bulletin 9, 275–280Google Scholar
  27. [27]
    Del Rio M, Font R, Fernandez-Martinez J, Dominguez J, De Haro A (2000): Field trials ofBrassica carinata andBrassica juncea in polluted soils of the Guadiamar river area. Fresenius Environmental Bulletin 9, 328–332Google Scholar
  28. [28]
    Alcantara E, Barra R, Benlloch M, Ginhas A, Jorrin JV, Lopez JA, Lora A, Ojeda MA, Puig M, Pujadas A, Requejo R, Romera J, Ruso J, Sancho ED, Shilev SI, Tena M (2001): Phytoremediation of a metal contaminated area in Southern Spain. Minerva Biotecnologica 13, 33–36Google Scholar
  29. [29]
    Reeves RD, Baker AJM (2000): Metal-accumulating plants. In: Phytoremediation of toxic metals - Using plants to clean up the environment (Raskin I, Ensley BD, eds) John Wiley and Sons, New York, USA, 193–229Google Scholar
  30. [30]
    Garbisu C, Alkorta I (2001): Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology 77, 229–236CrossRefGoogle Scholar
  31. [31]
    Lasat MM (2002): Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality 31, 109–120Google Scholar
  32. [32]
    Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999): Chelate-assisted phytoextraction of lead from contaminated soils. Journal of Environmental Quality 28, 1709- 1719CrossRefGoogle Scholar
  33. [33]
    Kulli B, Balmer M, Krebs R, Lothenbach B, Geiger G, Schulin R (1999): The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. Journal of Environmental Quality 28, 1699–1705Google Scholar
  34. [34]
    Grcman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D (2001): EDTA enhanced heavy metal phytoextraction: Metal accumulation, leaching and toxicity. Plant and Soil 235, 105–114CrossRefGoogle Scholar
  35. [35]
    McGrath SP, Zhao FJ, Lombi E (2001): Plant and rhizosphere processes involved in phytoremediation of metals-contaminated soils. Plant and Soil 232, 207–214CrossRefGoogle Scholar
  36. [36]
    Puschenreiter M, Stoger G, Lombi E, Horak O, Wenzel WW (2001): Phytoextraction of heavy metal contaminated soils withThlaspi goesingense andAmaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulfate. Journal of Plant Nutrition and Soil Science 164, 615–621CrossRefGoogle Scholar
  37. [37]
    Romkens P, Bouwman L, Japenga J, Draaisma C (2002): Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution 116, 109–121CrossRefGoogle Scholar
  38. [38]
    Lips SH, Fediuc E, Omarov R, Erdei L. (2000): A comparative study of sulfurylating enzymes involved in the biosynthesis of phytochelatins. In: Abstracts of the Inter-COST Workshop on Bioremediation, 15–18 November 2000, Sorrento, Italy, 84–86Google Scholar
  39. [39]
    Burd GI, Dixon DG, Glick BR (2000): Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology 46, 237–245CrossRefGoogle Scholar
  40. [40]
    Brooks RR, Chambers MF, Nicks LJ (1998): Phytomining. Trends in Plant Science 3, 359–362CrossRefGoogle Scholar
  41. [41]
    Anderson CWN, Brooks RR, Chiarucci A, La Coste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999): Phytomining of nickel, thallium and gold. Journal of Geo-chemical Exploration 67, 407–415CrossRefGoogle Scholar
  42. [42]
    Sandermann H, Schmitt R, Eckey H, Bauknecht T (1991): Plant biochemistry of xenobiotics: isolation and properties of soybean O- and N-glucosyl and O- and N-malonyltrans- ferases for chlorinated phenols and anilines. Archives of Biochemistry and Biophysics 287, 341–350CrossRefGoogle Scholar
  43. [43]
    Sandermann H (1992): Plant metabolism of xenobiotics. Trends in Biochemical Sciences 17, 82–84CrossRefGoogle Scholar
  44. [44]
    Harms HH (1992):In vitro systems for studying phytotox- icity and metabolic fate of pesticides and xenobiotics in plants. Pesticide Science 35, 277–281CrossRefGoogle Scholar
  45. [45]
    Edwards R, Dixon DP, Walbot V (2000): Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science 5, 193–198CrossRefGoogle Scholar
  46. [46]
    Werck-Reichhart D, Hehn A, Didierjean L (2000): Cytochromes P450 for engineering herbicide tolerance. Trends in Plant Science 5, 116–123CrossRefGoogle Scholar
  47. [47]
    Jones P, Vogt T (2001): Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213, 164–174CrossRefGoogle Scholar
  48. [48]
    Schroeder P, Scheer C, Belford EJD (2001): Metabolism of orga0nic xenobiotics in plants: conjugation enzymes and metabolic end points. Minerva Biotecnologica 13, 85–91Google Scholar
  49. [49]
    Harms HH (1996): Bioaccumulation and metabolic fate of sewage sludge derived organic xenobiotics in plants. The Science of the Total Environment 185, 83–92CrossRefGoogle Scholar
  50. [50]
    Kreuz K, Tommasini R, Martinoia E (1996): Old enzymes for a new job - Herbicide detoxification in plants. Plant Physiology 111, 349–353Google Scholar
  51. [51]
    Coleman JOD, Blake-Kalff MMA, Davies TGE (1997): Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends in Plant Science 2, 144–151CrossRefGoogle Scholar
  52. [52]
    Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996): Phytoremediation of soils contaminated with organic pol- lutants. Advances in Agronomy 56, 55–114CrossRefGoogle Scholar
  53. [53]
    Mehmannavaz R, Prasher SO, Ahmad D (2002): Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented withSinorhizo- biurn meliloti. Process Biochemistry 37, 955–963CrossRefGoogle Scholar
  54. [54]
    Campanella BF, Bock C, Schroederp P (2002): Phytoremediation to increase the degradation of PCBs and PCDD/Fs: Potential and limitations. Environmental Science and Pollution Research 9, 73–85CrossRefGoogle Scholar
  55. [55]
    Harvey PJ, Campanella BF, Castro PML, Harms H, Licht-fouse E, Schaffner AR, Smrcek S, Werck-Reichhart D (2002): Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environmental Science and Pollution Research 9, 29–47CrossRefGoogle Scholar
  56. [56]
    Trapp S, Karlson U (2001): Aspects of phytoremediation of organic pollutants. Journal of Soils and Sediments 1, 1–7CrossRefGoogle Scholar
  57. [57]
    Plata N (2000): Etude inhérente à un procédé de phytoremédiation de sols contaminés par des hydrocarbures du pétrole. Thesis Nr 2306, EPFL, Lausanne, SwitzerlandGoogle Scholar
  58. [58]
    Shang TQ, Doty SL, Wilson AM, Howald WN, Gordon MP (2001): Trichloroethylene oxidative metabolism in plants: The trichloroethanol pathway. Phytochemistry 58, 1055–1065CrossRefGoogle Scholar
  59. [59]
    Collins C, Laturnus F, Nepovim A (2002): Remediation of BTEX and trichloroethene: Current knowledge with special emphasis on phytoremediation. Environmental Science and Pollution Research 9, 86–94CrossRefGoogle Scholar
  60. [60]
    Martins Dias S (2000): Nitroaromatic compounds removal in a vertical flow reed bed case study: Industrial wastewater treatment. In: Abstracts of the Inter-COST Workshop on bioremediation, 15–1 8 November 2000, Sorrento, Italy, pp. 117–118Google Scholar
  61. [61]
    Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997): Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science and Technology 31, 266–271CrossRefGoogle Scholar
  62. [62]
    Snellinx Z, Nepovim A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002): Biological remediation of explosives and related nitroaromatic compounds. Environmental Science and Pollution Research 9, 48–61CrossRefGoogle Scholar
  63. [63]
    Olson PE, Fletcher JS, Philp PR (2001): Natural attenuation/ phytoremediation in the vadose zone of a former industrial sludge basin. Environmental Science and Pollution Research 8, 243–249CrossRefGoogle Scholar
  64. [64]
    Pletsch M, Santos de Araujo B, Charlwood BV (1999): Novel biotechnological approaches in environmental remediation research. Biotechnology Advances 17, 679–687CrossRefGoogle Scholar
  65. [65]
    Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1999): Phytoremediation of radiocesium-con- taminated soil in the vicinity of Chernobyl, Ukraine. Environmental Science and Technology 33, 469–475CrossRefGoogle Scholar
  66. [66]
    Victorova N, Voittsekhovitch O, Sorochinsky B, Vandenhove H, Konoplev A, Konopleva I (2000): Phytoremediation of Chernobyl contaminated land. Radiation Protection Dosimetry 92, 59–64Google Scholar
  67. [67]
    Zhu YG, Smolders E (2000): Plant uptake of radiocaesium: a review of mechanisms, regulation and application. Journal of Experimental Botany 51, 1635–1645CrossRefGoogle Scholar
  68. [68]
    Willey N, Hall S, Mudiganti A (2001): Assessing the potential of phytoremediation at a site in the UK contaminated with137Cs. International Journal of Phytoremediation 3, 321–333CrossRefGoogle Scholar
  69. [69]
    Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. Journal of Experimental Botany 49, 1183–1190CrossRefGoogle Scholar
  70. [70]
    Huang JWW, Blaylock MJ, Kapulnik Y, Ensley BD (1998): Phytoremediation of uranium contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science and Technology 32, 2004–2008CrossRefGoogle Scholar
  71. [71]
    Ramaswami A, Carr P, Burkhardt M (2001): Plant uptake of uranium: Hydroponic and soil system studies. International Journal of Phytoremediation 3, 189–201CrossRefGoogle Scholar
  72. [72]
    Vandenhove H, Van Hees M, Van Winckel S (2001): Feasibility of phytoextraction to clean up low-level uranium-contaminated sites. International Journal of Phytoremediation 3, 301–320CrossRefGoogle Scholar
  73. [73]
    Lee JH, Hossner LR, Attrep M, Kung KS (2002): Uptake and translocation of plutonium in two plant species using hydroponics. Environmental Pollution 117, 61–68CrossRefGoogle Scholar
  74. [74]
    Tsao D (1999): The industrialist’s perspective - Can phytoremediation really deliver what industry needs? In: IBC’s 4th Annual International Conference on Phytoremediation, June 23–25, 1999, Toronto, Ontario, Canada; International Business Communications, Southborough, MAGoogle Scholar
  75. [75]
    Larsen LC, Zambrano KC, Christiansen H, Köhler A, Karlson U, Trapp S (2001): Bepflanzung einer Tankstelle mit Weiden. Umweltwissenschaften und Schadstoff-Forschung 13, 227–236CrossRefGoogle Scholar
  76. [76]
    Predieri S, Figaj J, Rachwal L, Gatti E, Rapparini F (2001): Selection of woody species with enhanced uptake capacity: The case-study of Niedwiady resort pollution by pesticides stored in bunkers. Minerva Biotecnologica 13, 111–116Google Scholar

Copyright information

© Ecomed Publishers 2002

Authors and Affiliations

  • Jean-Paul Schwitzguébel
    • 1
    Email author
  • Daniël van der Lelie
    • 2
    • 3
  • Alan Baker
    • 4
  • David J. Glass
    • 5
  • Jaco Vangronsveld
    • 6
  1. 1.Swiss Federal Institute of Technology Lausanne (EPFL)Laboratory for Environmental BiotechnologyLausanneSwitzerland
  2. 2.Biology DepartmentBrookhaven National LaboratoryUptonUSA
  3. 3.Vlaamse Instelling voor Technologisch OnderzoekEnvironmental Technology Expertise CentreMolBelgium
  4. 4.School of BotanyUniversity of MelbourneAustralia
  5. 5.Applied PhytoGeneticsInc. and D. Glass Associates, Inc.NeedhamUSA
  6. 6.Limburgs Universitair Centrum, Centre for Environmental SciencesUniversitaire CampusDiepenbeekBelgium

Personalised recommendations