Annals of Nuclear Medicine

, Volume 15, Issue 3, pp 179–190 | Cite as

99mTc-MAG3: Review of pharmacokinetics, clinical application to renal diseases and quantification of renal function

  • Kazuo ItohEmail author


About 14 years have passed since Fritzberg et al. developed99mTc-MAG3 in 1986. The biological properties of this radiopharmaceutical are somewhat different from radioiodine labeled hippurate: it exhibits higher protein binding, slower blood clearance, higher extraction efficiency by tubular cells and larger excretion into the bile than the latter. Nonetheless, it has been widely used as the agent of choice for renal scintigraphy, diuresis renography, captopril augmented renography, and renal transplant. Renal scintigraphy with99mTc-MAG3 can provide excellent image quality even in the presence of severely decreased renal function.99mTc-MAG3 is also used as an alternative to radio-hippurate for quantitative measurement of effective renal plasma flow. In this review, I focused on its pharmacokinetics, simplified quantitative methods and clinical application in renal diseases.

Key words

99mTc-MAG3 pharmacokinetics renovascular hypertension plasma sample method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fritzberg AR, Kasina S, Eshima D, Johnson DL. Synthesis and biological evaluation of technetium-99m MAG3 as a hippuran replacement.J Nucl Med 1986; 27: 111–116.PubMedGoogle Scholar
  2. 2.
    Coveney JR, Robbins MS. Comparison of technetium-99m MAG3 kit with HPLC-purified technetium-99m MAG3 and OIH in rats.J Nucl Med 1987; 28: 1881–1887.PubMedGoogle Scholar
  3. 3.
    Eshima D, Taylor A, Jr, Fritzberg AR, Kasina S, Hansen L, Sorenson JF. Animal evaluation of technetium-99m triamide mercaptide complexes as potential renal imaging agents.J Nucl Med 1987; 28: 1180–1186.PubMedGoogle Scholar
  4. 4.
    Taylor A Jr, Eshima D. Effects of altered physiologic states on clearance and biodistribution of technetium-99m MAG3, iodine-131 OIH, and iodine-125 iothalamate.J Nucl Med 1988; 29: 669–675.PubMedGoogle Scholar
  5. 5.
    Brandau W, Bubeck B, Eisenhut M, Taylor DM. Technetium-99m labeled renal function and imaging agents: III. Synthesis of99mTc-MAG3 and biodistribution of by-products.Int J Rad Appl Instrum [A] 1988; 39: 121–129.CrossRefGoogle Scholar
  6. 6.
    Bormans G, Cleynhens B, Hoogmartens M, de Roo M, Ver Bruggen A Evaluation of99mTc-mercaptoacetyltripeptides in mice and a baboon.Int J Rad Appl Instrum [B] 1992; 19: 375–388.Google Scholar
  7. 7.
    Rehling MA, Frokiaer J, Poulsen EU, Marqversen J, Nielsen BV, Bacher T.99mTc-MAG3 kinetics in the normal pig. A comparison to131I-OIH and125I-iothalamate after single injection and during continuous infusion.Clin Physiol 1995; 15: 57–71.PubMedGoogle Scholar
  8. 8.
    Taylor A Jr, Eshima D, Fritzberg AR, Christian PE, Kasina S. Comparison of iodine-131 OIH and technetium-99m MAG3 renal imaging in volunteers.J Nucl Med 1986; 27: 795–803.PubMedGoogle Scholar
  9. 9.
    Taylor A Jr, Eshima D, Christian PE, Milton W. Evaluation of Tc-99m mercaptoacetyltriglycine in patients with impaired renal function.Radiology 1987; 162: 365–370.PubMedGoogle Scholar
  10. 10.
    Al-Nahhas AA, Jafri RA, Britton KE, Solanki K, Bomanji J, Mather S, et al. Clinical experience with99mTc-MAG3, mercaptoacetyltriglycine, and a comparison with99mTc-DTPA.Eur J Nucl Med 1988; 14: 453–462.CrossRefPubMedGoogle Scholar
  11. 11.
    Bubeck B, Brandau W, Steinbacher M, Reinbold F, Dreikorn K, Eisenhut M, et al. Technetium-99m labeled renal function and imaging agents: II. Clinical evaluation of99mTc MAG3 (99mTc mercaptoacetylglycylglycylglycine).Int J Rad Appl Instrum [B] 1988; 15: 109–118.Google Scholar
  12. 12.
    Jafri RA, Britton KE, Nimmon CC, Solanki K, Al-Nahhas A, Bomanji J, et al. Technetium-99m MAG3, a comparison with iodine-123 and iodine-131 orthoiodohippurate, in patients with renal disorders.J Nucl Med 1988; 29: 147–158.PubMedGoogle Scholar
  13. 13.
    Taylor A Jr, Eshima D, Christian PE, Wooten WW, Hansen L, McElvany K. Technetium-99m MAG3 kit formulation: preliminary results in normal volunteers and patients with renal failure.J Nucl Med 1988; 29: 616–622.PubMedGoogle Scholar
  14. 14.
    Taylor A Jr, Ziffer JA, Steves A, Eshima D, Delaney VB, Welchel JD. Clinical comparison of I-131 orthoiodohippurate and the kit formulation of Tc-99m mercaptoacetyltriglycine.Radiology 1989; 170: 721–725.PubMedGoogle Scholar
  15. 15.
    Abdel-Dayem H, Sadek S, Al-Bahar R, Sabha M, El-Sayed M.. Comparison of99m Tc-mercaptoacetyltriglycine and31I-orthoiodohippurate in determination of effective renal plasma flow (ERPF).Nucl Med Commun 1989; 10: 99–107.CrossRefPubMedGoogle Scholar
  16. 16.
    Bubeck B, Brandau W, Weber E, Kalble T, Parekh N, Georgi P. Pharmacokinetics of technetium-99m-MAG3 in humans.J Nucl Med 1990; 31: 1285–1293.PubMedGoogle Scholar
  17. 17.
    Muller-Suur R, Bois-Svensson I, Mesko L. A comparative study of renal scintigraphy and clearance with technetium-99m-MAG3 and iodine-123-hippurate in patients with renal disorders.J Nucl Med 1990; 31: 1811–1817.PubMedGoogle Scholar
  18. 18.
    Eshima D, Fritzberg AR, Taylor A Jr.99mTc renal tubular function agents: current status.Semin Nucl Med 1990; 20: 28–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Bagni B, Portaluppi F, Montanari L, Prandini N, Zatta G.99mTc-MAG3 versus131I-orthoidohippurate in the routine determination of effective renal plasma flow.J Nucl Med Allied Sci 1990; 34: 64–70.Google Scholar
  20. 20.
    Prenen JA, de Klerk JM, van het Schip AD, van Rijk PP. Technetium-99m-MAG3 versus iodine-123-OIH: renal clearance and distribution volume as measured by a constant infusion technique.J Nucl Med 1992; 32: 2057–2060.Google Scholar
  21. 21.
    Kengen RA, Meijer S, Beekhuis H, Piers DA. Technetium-99m-MAG3 clearance as a parameter of effective renal plasma flow in patients with proteinuria and lowered serum albumin levels.J Nucl Med 1991; 32: 1709–1712.PubMedGoogle Scholar
  22. 22.
    Eshima D, Taylor A Jr. Technetium-99m (99mTc) mercaptoacetyltriglycine: update on the new99mTc renal tubular function agent.Semin Nucl Med 1992; 22: 61–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Itoh K, Tsukamoto E, Kakizaki H, Nonomura K, Koyanagi T, Furudate M, et al. Phase II study of Tc-99m MAG3 in patients with nephrourologic diseases.Clin Nucl Med 1993; 18: 387–393.CrossRefPubMedGoogle Scholar
  24. 24.
    Peters AM, Brown H, Cosgriff P. Measurement of the extravascular concentration of renal agents following intravenous bolus injection.Nucl Med Commun 1994; 15: 66–72.CrossRefPubMedGoogle Scholar

Renovascular hypertension

  1. 25.
    Pickering TG. Renovascular hypertension: etiology and pathophysiology.Semin Nucl Med 1989; 19: 49–88.CrossRefGoogle Scholar
  2. 26.
    Nally J, Black HR. State-of-the-art review: captopril renography-pathophysiological consideration and clinical observation.Semin Nucl Med 1992; 22: 85–97.CrossRefPubMedGoogle Scholar
  3. 27.
    Taylor A, Nally J, Aurell M, Blaufox D, Dondi D, Dubovsky E, et al. Consensus report for detecting renovascular hypertension. Radionuclides in Nephrourology Group. Consensus Group on ACEI Renography.J Nucl Med 1996; 37: 1876–1882.PubMedGoogle Scholar
  4. 28.
    Pedersen EB, Sorensen SS, Amdisen A, Danielsen H, Eiskjaer H, Hansen HH, et al. Abnormal glomerular and tubular function during angiotensin converting enzyme inhibition in renovascular hypertension evaluated by the lithium clearance method.Eur J Clin Invest 1989; 19: 135–141.CrossRefPubMedGoogle Scholar
  5. 29.
    Roccatello D, Picciotto G, Rabbia C, Pozzato M, De Filippi PG, Piccoli G. Prospective study on captopril renography in hypertensive patients.Am J Nephrol 1992; 12: 406–411.CrossRefPubMedGoogle Scholar
  6. 30.
    Datseris IE, Bomanji JB, Brown EA, Nijran KS, Padhy AK, Siraj QH, et al. Captopril renal scintigraphy in patients with hypertension and chronic renal failure.J Nucl Med 1994; 35: 251–254.PubMedGoogle Scholar
  7. 31.
    Bubeck B. Radionuclide techniques for the evaluation of renal function: advantages over conventional methodology.Curr Opin Nephrol Hypertens 1995; 4: 514–519.CrossRefPubMedGoogle Scholar
  8. 32.
    Schreij G, van Es PN, van Kroonenburgh MJ, Kemerink GJ, Heidendal GA, de Leeuw PW. Baseline and postcaptopril renal blood flow measurements in hypertensives suspected of renal artery stenosis.J Nucl Med 1996; 37: 1652–1655.PubMedGoogle Scholar
  9. 33.
    Mittral BR, Kumar P, Arora P, Kher V, Singhal MK, Maini A, Das BK. Role of captopril renography in the diagnosis of renovascular hypertension.Am J Kidney Dis 1996; 28: 209–213.CrossRefGoogle Scholar
  10. 34.
    Blaufox MD, Fine EJ, Heller S, Hurley J, Jagust M, Li Y, et al. Prospective study of simultaneous orthoidodohippurate and diethylenetriaminepentaacetic acid captopril renography. The Einstein/Cornell Collaborative Hypertension Group.J Nucl Med 1998; 39: 522–528.PubMedGoogle Scholar
  11. 35.
    Imanishi M, Yano M, Okumura M, Kimura G, Kawano Y, Oda J, et al. Aspirin renography in diagnosis of unilateral renovascular hypertension.Hypertens Res 1998; 21: 209–213.CrossRefPubMedGoogle Scholar
  12. 36.
    Rutland MD, Que L. A comparison of the renal handling of99Tcm-DTPA and99Tcm-MAG3 in hypertensive patients using an uptake technique.Nucl Med Commun 1999; 20: 823–828.PubMedCrossRefGoogle Scholar
  13. 37.
    Stavropoulos SW, Sevigny SA, Ende JF, Drane WF. Hypotensive response to captopril: a potential pitfall of scintigraphic assessment for renal artery stenosis.J Nucl Med 1999; 40: 406–411.PubMedGoogle Scholar
  14. 38.
    Claveau-Tremblay R, Turpin S, De Braekeleer M, Brassard A, Lblond R. False-positive renography in patients taking calcium antagonists.J Nucl Med 1998; 39: 1621–1626.PubMedGoogle Scholar
  15. 39.
    Muller-Suur R, Tidgren B, Fehrm A, Lundberg HJ. Captopril-induced changes in MAG3 clearance in patients with renal arterial stenosis and the effect of renal angioplasty.J Nucl Med 2000; 41: 1203–1208.PubMedGoogle Scholar
  16. 40.
    van de Ven, de Klerk JM, Mertens IJ, Koomans HA, Beutler JJ. Aspirin renography and captopril renography in the diagnosis of renal artery stenosis.J Nucl Med 2000; 41: 1337–1342.PubMedGoogle Scholar

Hydronephrosis and Cystography

  1. 41.
    Itoh K, Taniguchi K, Nantani M, Nonomura K, Furudate M, Koyanagi T. Comparison of conventional furosemide diuresis renography with direct intrapelvic infusion renography. In: Blaufox MD, Hollenberg NK, Raynaud C (eds). Radionuclides in nephro-urology.Contrib Nephrol 1990; 79; 156–160.Google Scholar
  2. 42.
    Hvid-Jacobsen K, Thomsen HS, Nielsen SL. Diuresis renography. A simultaneous comparison between131I-hippuran and99Tcm-MAG3.Acta Radiol 1990; 31: 83–86.PubMedGoogle Scholar
  3. 43.
    Society for Fetal Urology and The Pediatric Nuclear Medicine Council. The “well tempered” diuretic renogram: a standard method to examined the asymptomatic neonate with hydronephrosis or hydroureteronephrosis.J Nucl Med 1992; 33: 2047–2051.Google Scholar
  4. 44.
    Bowen J, Sharma H, Gough DC. Chronic hydronephrosis: renographic drainage patterns and renal morphology in an animal model.Br J Urol 1994; 74: 26–30.PubMedCrossRefGoogle Scholar
  5. 45.
    Rossleigh MA, Thomas MY, Moase AL. Determination of the normal range of furosemide half-clearance times when using Tc-99m MAG3.Clin Nucl Med 1994; 19: 880–882.PubMedGoogle Scholar
  6. 46.
    Wong JC, Rossleigh MA, Farnsworth RH. Utility of technetium-99m-MAG3 diuretic renography in the neonatal period.J Nucl Med 1995; 36: 2214–2219.PubMedGoogle Scholar
  7. 47.
    Mandell GA, Cooper JA, Leonard JC, Majd M, Miller JH, Parisi MT, et al. Procedure guideline for diuretic renography in children.J Nucl Med 1997; 38: 1647–1650.PubMedGoogle Scholar
  8. 48.
    Fine EJ. Interventions of renal scintirenography.Semin Nucl Med 1999; 29: 128–145.CrossRefPubMedGoogle Scholar
  9. 49.
    Grandaliano G, Gesualdo L, Bartoli F, Ranieri E, Monno R, Leggio A, et al. MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy.Kidney Int 2000; 58: 182–192.CrossRefPubMedGoogle Scholar
  10. 50.
    Wong DC, Rossleigh MA, Farnsworth RH. Diuretic renography with the addition of quantitative gravity-assisted drainage in infants and children.J Nucl Med 2000; 41: 1030–1036.PubMedGoogle Scholar
  11. 51.
    De Sadeleer C, De Boe V, Keuppens F, Desprechins B, Verboven M, Piepsz A. How good is technetium-99m mercaptoacetyltriglycine indirect cystography?Eur J Nucl Med 1994; 21: 223–227.CrossRefPubMedGoogle Scholar

Renal transplant

  1. 52.
    Dubovsky EV, Russell CD. Radionuclide evaluation of renal transplants.Semin Nucl Med 1988; 18: 181–198.CrossRefPubMedGoogle Scholar
  2. 53.
    Fraile M, Castell J, Buxeda M, Cuartero A, Cantarell C, Domenech-Torne FM. Transplant renography:99mTc-DTPA versus99mTc-MAG3. A preliminary note.Eur J Nucl med 1989; 15: 776–779.CrossRefPubMedGoogle Scholar
  3. 54.
    Taylor A, Jr, Ziffer JA, Eshima D. Comparison of Tc-99m MAG3 and Tc-99m DTPA in renal transplant patients with impaired renal function.Clin Nucl Med 1990; 15: 371–378.CrossRefPubMedGoogle Scholar
  4. 55.
    Li Y, Russell CD, Palmer-Lawrence J, Dubovsky EV. Quantitation of renal parenchymal retention of technetium-99m-MAG3 in renal transplants.J Nucl Med 1994; 35: 846–850.PubMedGoogle Scholar
  5. 56.
    Bajen MT, Puchal R, Gonzalez A, Grinyo JM, Castelao A, Mora J, et al. MAG3 renogram deconvolution in kidney transplantation: utility of the measurement of initial tracer uptake.J Nucl Med 1997; 38: 1295–1299.PubMedGoogle Scholar
  6. 57.
    Tulchinsky M, Dietrich TJ, Eggli DF, Yang HC. Technetium-99m-MAG3 scintigraphy in acute renal failure after transplantation: a marker of viability and prognosis.J Nucl Med 1997; 38: 475–478.PubMedGoogle Scholar
  7. 58.
    Dubovsky EV, Russell CD, Erbas B. Radionuclide evaluation of renal transplants.Semin Nucl Med 1995; 25: 49–59.CrossRefPubMedGoogle Scholar
  8. 59.
    Russell CD, Dubovsky EV, Taylor AT Jr. Prediction of urinary excretion of technetium-99m-MAG3.J Nucl Med 1998; 39: 1257–1259.PubMedGoogle Scholar
  9. 60.
    Dubovsky EV, Russell CD, Bischof-Delaloye A, Bubeck B, Chaiwatanarat T, Hilson AJ, et al. Report of the Radionuclides in Nephrourology Committee for evaluation of transplanted kidney (review of techniques).Semin Nucl Med 1999; 29: 175–188.CrossRefPubMedGoogle Scholar


  1. 61.
    Russell CD, Taylor A Jr, Eshima D. Estimation of technetium-99m-MAG3 plasma clearance in adults from one or two blood samples.J Nucl Med 1989; 30: 1955–1959.PubMedGoogle Scholar
  2. 62.
    Bubeck B, Piepenburg R, Grethe U, Uhrig B, Hahn K. A new principle to normalize plasma concentrations allowing single-sample clearance determinations in both children and adults.Eur J Nucl Med 1992; 19: 511–516.CrossRefPubMedGoogle Scholar
  3. 63.
    Piepsz A, Gordon I, Hahn K, Kolinska J, Kotzerke J, Sixt R. Determination of the technetium-99m mercaptoacetyltriglycine plasma clearance in children by means of a single blood sample: a multicentre study. The Paediatric Task Group of the EANM.Eur J Nucl Med 1993; 20: 244–248.PubMedGoogle Scholar
  4. 64.
    Bubeck B. Renal clearance determination with one blood sample: improved accuracy and universal applicability by a new calculation principle.Semin Nucl Med 1993; 23: 73–86.CrossRefPubMedGoogle Scholar
  5. 65.
    O’Reilly MA, Gordon I, Thomas H, MacDonald B. What proportion of isotope injected does the child receive in dynamic renal scanning?Nucl Med Commun 1992; 13: 450–453.CrossRefPubMedGoogle Scholar
  6. 66.
    Russell CD, Dubovsky EV. Comparison of single-injection multisample renal clearance methods with and without urine collection.J Nucl Med 1995; 36: 603–606.PubMedGoogle Scholar
  7. 67.
    Taylor A Jr, Corrigan PL, Galt J, Garcia EV, Folks R, Jones M, et al. Measuring technetium-99m-MAG3 clearance with an improved camera-based method.J Nucl Med 1995; 36: 1689–1695.PubMedGoogle Scholar
  8. 68.
    Russell CD, Dubovsky EV. Quantitation of renal function using MAG3 [editorial; comment].J Nucl Med 1991; 32: 2061–2063.PubMedGoogle Scholar
  9. 69.
    Russell CD, Japanwalla M, Khan S, Scott JW, Dubovsky EV. Techniques for measuring renal transit time.Eur J Nucl Med 1995; 22: 1372–1378.CrossRefPubMedGoogle Scholar
  10. 70.
    Russell CD, Tayler AT, Dubovsky EV. Measurement of renal function with technetiurm-99m-MAG3 in children and adults.J Nucl Med 1996; 37: 588–593.PubMedGoogle Scholar
  11. 71.
    Itoh K, Nonomura K, Yamashita T, Kanegae K, Murakumo M, Koyanagi T, et al. Quantification of renal function with a count-based gamma camera method using technetium-99m-MAG3 in children.J Nucl Med 1996; 37: 71–75.PubMedGoogle Scholar
  12. 72.
    Blaufox MD, Aurell M, Bubeck B, Fommei E, Piepsz A, Russell C, et al. Report of the Radionuclides in Nephrourology Committee on renal clearance.J Nucl Med 1996; 37: 1883–1890.PubMedGoogle Scholar
  13. 73.
    Taylor A Jr, Manatunga A, Morton K, Reese L, Prato FS, Greenberg E, et al. Multicenter trials validation of a camera-based method to measure Tc-99m mercaptoacetyltriglycine, or Tc-99m MAG3, clearance.Radiology 1997; 204: 47–54.PubMedGoogle Scholar
  14. 74.
    Dagli MS, Caride VJ, Carpenter S, Zubal IG. Compartmental analysis of the complete dynamic scan data for scintigraphic determination of effective renal plasma flow.J Nucl Med 1997; 38: 1285–1290.PubMedGoogle Scholar
  15. 75.
    Oriuchi N, Onishi Y, Kitamura H, Inoue T, Tomaru Y, Higuchi T, et al. Noninvasive measurement of renal function with99mTc-MAG3 gamma-camera renography based on the one-compartment model.Clin Nephrol 1998; 50: 289–294.PubMedGoogle Scholar
  16. 76.
    Russell CD, Dubovsky EV. Reproducibility of single-sample clearance of99mTc-mercaptoacetyltriglycine and131I-orthoiodohippurate.J Nucl Med 1999; 40: 1122–1124.PubMedGoogle Scholar
  17. 77.
    Fleming JS, Kemp PM. A comparison of deconvolution and the Patlak-Rutland plot in renography analysis.J Nucl Med 1999; 40: 1503–1507.PubMedGoogle Scholar
  18. 78.
    Prigent A, Cosgriff P, Gates GF, Granerus C, Fine EJ, Itoh K, et al. Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: international consensus committee from the Scientific Committee of Radionuclides in Nephrourology.Semin Nucl Med 1999; 29: 146–158.CrossRefPubMedGoogle Scholar
  19. 79.
    Itoh K, Tsukamoto E, Mochizuki T, Kanegae K, Katoh C, Tamaki N. Comparison of single sample methods for determination of plasma clearance using99mTc-MAG3.KAKU IGAKU (Jpn J Nucl Med) 1998; 35: 689–695.Google Scholar
  20. 80.
    De Sadeleer C, Piepsz A, Tondeur M, Ham HR. Simplified algorithms for the estimation of99Tcm-MAG3 clearance.Nucl Med Commun 2000; 21: 65–69.CrossRefPubMedGoogle Scholar

Chemical Impurity

  1. 81.
    Millar AM, O’Brien LM. An investigation of factors that might influence the radiochemical purity and stability of99mTc-MAG3.Eur J Nucl Med 1990; 16: 615–619.CrossRefPubMedGoogle Scholar
  2. 82.
    Hung JC. Comparison of technetium-99m MAG3 kit formulations in Europe and the USA.Eur J Nucl Med 1992; 19: 990–992.CrossRefPubMedGoogle Scholar
  3. 83.
    Chen F, Decristoforo C, Rohrbacher B, Riccabona G. A simple two-strip method to determine the radiochemical purity of technetium-99m mercaptoacetyltriglycine.Eur J Nucl Med 1993; 20: 334–338.CrossRefPubMedGoogle Scholar
  4. 84.
    Piepsz A. Comparison of technetium-99m MAG3 kit formulations in Europe and the USA.Eur J Nucl Med 1993; 20: 361.PubMedGoogle Scholar
  5. 85.
    Shattuck LA, Eshima D, Taylor AT Jr, Anderson TL, Graham DL, Latino FA, et al. Evaluation of the hepatobiliary excretion of technetium-99m-MAG3 and reconstitution factors affecting radiochemical purity.J Nucl Med 1994; 35: 349–355.PubMedGoogle Scholar
  6. 86.
    Hung JC, Thorson LM. Effects of generator eluate age on the radiochemical purity of fractionated99Tcm-MAG3.Nucl Med Commun 1995; 16: 157–160.CrossRefPubMedGoogle Scholar

Radiation Dosimetry

  1. 87.
    Stabin M, Taylor A, Jr, Eshima D, Wooter W. Radiation dosimetry for technetium-99m-MAG3, technetium-99m-DTPA, and iodine-131-OIH based on human biodistribution studies.J Nucl Med 1992; 33: 33–40.PubMedGoogle Scholar
  2. 88.
    Gadd R, Mountford PJ, Oxtoby JW. Effective dose to children and adolescents from radiopharmaceuticals.Nucl Med Commun 1999; 20: 569–573.CrossRefPubMedGoogle Scholar
  3. 89.
    Muller-Suur R. Radiopharmaceuticals: their intrarenal handling and localization. Murray IPC, Ell PJ (eds),Nulcear Medicine in Clinical Diagnosis and Treatment 2nd Edition, vol. 1, London; Churchill-Livingstone 1998: 211–228.Google Scholar
  4. 90.
    Kusama T, Kai M, Ban N, edited “Houshasen Kenkou Kagaku,” Tokyo; Kyorin Shoten, 1995: 161.Google Scholar


  1. 91.
    Woolfson RG, Neild GH. Renal nuclear medicine: can it survive the millennium?Nephrol Dial Transplant 1998; 13: 12–14.CrossRefPubMedGoogle Scholar
  2. 92.
    Moran JK. Technetium-99m-EC and other potential new agents in renal nuclear medicine.Semin Nucl Med 1999; 29: 91–101.CrossRefPubMedGoogle Scholar
  3. 93.
    Levey AS. Use of glomerula filtration rate measurements to assess the progression of renal disease.Semin Nephrol 1989; 9: 370–379.PubMedGoogle Scholar
  4. 94.
    Hauser W, Atkins HL, Nelson KG, Richards P. Technetium-99m DTPA: a new radiopharmaceutical for brain and kidney scanning.Radiology 1970; 94: 679–684.PubMedGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  1. 1.Department of RadiologyJR Sapporo General HospitalSapporoJapan

Personalised recommendations