Advertisement

EuroBionet: A Pan-European Biomonitoring Network for Urban Air Quality Assessment

  • A. KlumppEmail author
  • W. Ansel
  • G. Klumpp
  • N. Belluzzo
  • V. Calatayud
  • N. Chaplin
  • J. P. Garrec
  • H. J. Gutsche
  • M. Hayes
  • H. W. Hentze
  • H. Kambezidis
  • O. Laurent
  • J. Peñuelas
  • S. Rasmussen
  • A. Ribas
  • H. Ro-Poulsen
  • S. Rossi
  • M. J. Sanz
  • H. Shang
  • N. Sifakis
  • P. Vergne
Environmental Management Strategies

Abstract

EuroBionet, the ‘European Network for the Assessment of Air Quality by the Use of Bioindicator Plants’, is an EU-funded cooperative project currently consisting of public authorities and scientific institutes from 12 cities in 8 countries. In 2000, the bioindicator plants tobacco (Nicotiana tabacum Bel W3), poplar (Populus nigra ‘Brandaris’), spiderwort (Tradescantia sp. clone 4430), Italian rye grass (Lolium multiflorum italicum) and curly kale (Brassica oleracea acephala) were exposed to ambient air at 90 monitoring sites according to standardised methods. Visible injuries and growth parameters were assessed and the accumulation of toxic substances in leaves determined. The exposure of tobacco resulted in a gradient with low levels of ozone-induced foliar injury in N and NW Europe, and medium to high values in the southern and central regions. The results of heavy metal and sulphur analyses in rye grass samples generally showed low to very low sulphur and low to medium heavy metal concentrations in leaves. In some cities, however, local hot spots of heavy metal contamination were detected. Analyses of the PAH contents in curly kale leaves gave low to medium values, with locally elevated levels at traffic-exposed sites.

Keywords

Air quality bioindicators biomonitoring curly kale EuroBionet heavy metals ozone mutagenic substances polycyclic aromatic hydrocarbons (PAH) poplars standardisation standardised grass culture tobacco tradescantia urban air quality assessment urban pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    EEA European Environment Agency (1998): Europe’s environment: The second assessment. Elsevier, Oxford, 293 ppGoogle Scholar
  2. [2]
    Colvile RN, Hutchinson EJ, Mindell JS, Warren RF (2001): The transport sector as a source of air pollution. Atmos Environ 35, 1537–1565CrossRefGoogle Scholar
  3. [3]
    De Leeuw FAAM, Moussiopoulos N, Sahm P, Bartonova A (2001): Urban air quality in larger conurbations in the European Union. Environmental Modelling and Software 16, 399–414CrossRefGoogle Scholar
  4. [4]
    Höpfner U (2001): Emissionsund Immissionsprognosen für den Straßenverkehr in Deutschland. UWSF — Z Umweltchem Ökotox 13, 206–215Google Scholar
  5. [5]
    EU European Union (1996): Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management. Official Journal of the European Communities L296: 55–63Google Scholar
  6. [6]
    Arndt U, Nobel W, Schweizer B (1987): Bioindikatoren - Möglichkeiten, Grenzen und neue Erkenntnisse. Ulmer Verlag, Stuttgart, 388 ppGoogle Scholar
  7. [7]
    Mulgrew A, Williams P (2000): Biomonitoring of air quality using plants. WHO Collaborating Centre for Air Quality Management and Air Pollution Control at the Federal Environmental Agency Germany, Report 10, 165 ppGoogle Scholar
  8. [8]
    Benton J, Fuhrer J, Gimeno BS, Skärby L, Palmer-Brown D, Ball G, Roadknight C, Mills G (2000): An international cooperative programme indicates the widespread occurrence of ozone injury on crops. Agric Ecosys Environ 78, 19–30CrossRefGoogle Scholar
  9. [9]
    VDI Verein Deutscher Ingenieure (1999): Biological measuring techniques for the determination and evaluation of effects of air pollutants on plants. Fundamentals and aims. VDIGuideline 3957/1. VDI/DIN Handbuch Reinhaltung der Luft, Vol. 1a, Beuth, BerlinGoogle Scholar
  10. [10]
    Sanz MJ (2002): Efforts of standardisation of ozone bioindication in Europe. In: Klumpp A, Fomin A, Klumpp G, Ansel W (Eds): Bioindication and Air Quality in European Cities — Research, Application, Communication. Heimbach Verlag, Stuttgart, 87–94Google Scholar
  11. [11]
    Beaumont R, Hamilton RS, Machin N, Perks J, Williams ID (1999): Social awareness of air quality information. Sci Total Environ 235, 319–329CrossRefGoogle Scholar
  12. [12]
    Castell JF, Maronnier D (2002): Biomonitoring of ozone: A tool to initiate the young people into the scientific method and air pollution impacts. In: Klumpp A, Fomin A, Klumpp G, Ansel W (Eds): Bioindication and Air Quality in European Cities — Research, Application, Communication. Heimbach Verlag, Stuttgart, 265–270Google Scholar
  13. [13]
    Klumpp A, Fomin A, Klumpp G, Ansel W (2002): Bioindication and Air Quality in European Cities — Research, Application, Communication. Heimbach Verlag, Stuttgart, 295 ppGoogle Scholar
  14. [14]
    VDI Verein Deutscher Ingenieure (2000): Determination of the phytotoxic effects of ozone and other photooxidants. Standardised exposure of tobacco. VDI-Guideline 3957/6 (draft). VDI/DIN Handbuch Reinhaltung der Luft, Vol. 1a, Beuth, BerlinGoogle Scholar
  15. [15]
    van Hove LWA, Bossen ME, de Bok FAM, Hooijmaijers CAM (1999): The uptake of O3 by poplar leaves: The impact of a long-term exposure to low O3-concentrations. Atmos Environ 33, 907–917CrossRefGoogle Scholar
  16. [16]
    VDI Verein Deutscher Ingenieure (2000): Standardised exposure of green cabbage. VDI-Guideline 3957/3. VDI/DIN Handbuch Reinhaltung der Luft, Vol 1a, Beuth, BerlinGoogle Scholar
  17. [17]
    VDI Verein Deutscher Ingenieure (2001): Method of standardised grass exposure. VDI-Guideline 3957/2 (draft). VDI/ DIN Handbuch Reinhaltung der Luft, Vol 1a, Beuth, BerlinGoogle Scholar
  18. [18]
    Ma TH, Cabrera GL, Chen R, Gill BS, Sandhu SS, Vandenberg AL, Salamone MF (1994):Tradescantia micronucleus bioassay. Mutat Res 310, 221–230Google Scholar
  19. [19]
    Monarca S, Feretti D, Zanardini A, Falistocco E, Nardi G. (1999): Monitoring of mutagens in urban air samples. Mutat Res 426, 189–192Google Scholar
  20. [20]
    Maier W, Pirker D, Pongratz T, Schopper A, Waikinat I (2002): Biomonitoring of air pollution by organic compounds in the city of Graz and the industrial area of Leoben Donawitz. In: Klumpp A, Fomin A, Klumpp G, Ansel W (Eds): Bioindication and Air Quality in European Cities — Research, Application, Communication. Heimbach Verlag, Stuttgart, 259–264Google Scholar
  21. [21]
    Franzaring J, van der Eerden L (2000): Accumulation of airborne persistent organic pollutants (POPs) in plants. Basic Appl Ecol 1, 25–30CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 2002

Authors and Affiliations

  • A. Klumpp
    • 1
    Email author
  • W. Ansel
    • 1
  • G. Klumpp
    • 1
  • N. Belluzzo
    • 2
  • V. Calatayud
    • 3
  • N. Chaplin
    • 4
  • J. P. Garrec
    • 5
  • H. J. Gutsche
    • 6
  • M. Hayes
    • 7
  • H. W. Hentze
    • 8
  • H. Kambezidis
    • 9
  • O. Laurent
    • 10
  • J. Peñuelas
    • 11
  • S. Rasmussen
    • 12
  • A. Ribas
    • 11
  • H. Ro-Poulsen
    • 12
  • S. Rossi
    • 2
  • M. J. Sanz
    • 3
  • H. Shang
    • 5
  • N. Sifakis
    • 9
  • P. Vergne
    • 13
  1. 1.Institute for Landscape and Plant Ecology (320)University of HohenheimStuttgartGermany
  2. 2.City of VeronaVeronaItaly
  3. 3.CEAM FoundationValènciaSpain
  4. 4.Environment & Regulatory Serv.Sheffield City CouncilSheffieldUK
  5. 5.INRA NancyAir Pollution LabChampenouxFrance
  6. 6.Department of EnvironmentCity of KlagenfurtKlagenfurtAustria
  7. 7.Environ. & Consumer Serv.The City of Edinburgh CouncilEdinburghUK
  8. 8.Department of EnvironmentCity of DüsseldorfDüsseldorfGermany
  9. 9.National Observatory of AthensAthensGreece
  10. 10.Communauté urbaine de LyonUrban Ecology Dept.Lyon Cedex 03France
  11. 11.CSIC-CREAFAutonomous University of BarcelonaBellaterra (Barcelona)Spain
  12. 12.Botanical InstituteUniversity of CopenhagenCopenhagen KDenmark
  13. 13.ENS Lyon and Lyon Botanical GardensLyon Cedex 07France

Personalised recommendations