Free-air fumigation of mature trees

A novel system for controlled ozone enrichment in grown-up beech and spruce canopies
Research Articles

Abstract

A novel system for continuous and controlled free-air fumigation of mature tree canopies with ozone is described. Ozone generated from oxygen is diluted with air in a pressurized tank and conducted into the canopies by a system of 100 PTFE tubes hanging down from a grid fixed above the crowns. With 45 calibrated outlets per tube providing a constant flow of 0.3 1/min each, a total volume of about 10*10*15 m3 comprising 5 beech and 5 spruce canopies is fumigated. The spatial ozone distribution in the fumigated volume as well as surrounding reference tree canopies is controlled by continuous measuring instruments installed at 4 levels and a dense array of passive samplers. The system will later be used for CO2 fumigation as well. Results of the first year of continuos operation, with 2 * ambient ozone levels having been achieved, are reported.

Keywords

Beech FACE free-air CO2 enrichment (FACE) fumigation Ozone passive samplers research articles spruce stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arndt U, Seufert G (1990): Introduction to the Hohenheim long-term experiment. Environ Pollut68, 195–204CrossRefGoogle Scholar
  2. Baumgarten M, Werner H, Häberle K-H, Emberson LD, Fabian P, Matyssek R (2000): Seasonal ozone response of mature beech trees (Fagus sylvatica) at high altitude in the Bavarian forest (Germany) in comparison with young beech grown in the field and in phytotrones. Environ Pollut109, 431–442CrossRefGoogle Scholar
  3. Cannon WN Jr, Roberts BR, Barger JH (1993): Growth and physiological response of water-stressed yellow-poplar seedlings exposed to chronic ozone fumigation and ethylenediurea. Forest Ecology and Managern61, 61–73CrossRefGoogle Scholar
  4. Dizengremel P, Sasek TW, Brown KJ, Richardson CJ (1994): Ozoneinduced changes in primary carbon metabolism enzymes of Loblolly Pine needles. J Plant Physiol144, 300–306Google Scholar
  5. Eamus D, Barnes JD, Mortensen L, Ro-Poulsen H, Davison AW (1990): Persistent simulation of CO2 assimilation and stomatal conductance by summer ozone fumigation in Norway Spruce. Environ Pollut63, 365–379CrossRefGoogle Scholar
  6. Ebel B, Seebach MD, Debus R (1991): Chronische Wirkungen niedriger Schadgasbelasrung auf Ultrastrukturen und Zuwachs von Klonfichten (Picea abies) in Open-Top-Kammem. Angew Botanik65, 309–318Google Scholar
  7. Edwards GS, Kelly JM, Mays PA (1992): Ozone, acidic precipitation, and soil Mg impacts on soil and Loblolly Pine seedling nutrient status after three growing seasons. Water, Air and Soil Pollut63, 281–294CrossRefGoogle Scholar
  8. Flammersfeld U, Wild A (1992): Changes in the constitution of Thylakoid membranes in Spruce needles during an open-top chamber experiment. Bot Acta105, 348–354Google Scholar
  9. Foster JR, Loats KV, Jensen KF (1990): Influence at two growing seasons of experimental ozone fumigation on photosynthetic characteristics of white oak seedlings. Environ Pollut65, 371–380CrossRefGoogle Scholar
  10. Frey B, Scheidegger C, Günthardt-Goerg MS, Matyssek R (1996): The effects of ozone and nutrient supply on stomatal response in birch (Betula pendula) leaves as determined by digital image-analysis and X-ray microanalysis. New Phytol132, 135–143CrossRefGoogle Scholar
  11. Hampp R, Jäger H-J, Manderscheid R, Reinhardt W (1991): Oben offene Experimentierkammern am Edelmannshof. 1. Bericht KfK-PEF 76, Kernforschungszentrum KarlsruheGoogle Scholar
  12. Hanson PJ, Samuelson LJ, Wullschleger SD, Tabberer TA, Edwards GS (1994): Seasonal pattern of light-saturated photosynthesis and leaf conductance for mature and seedlingQuercus rubra L. foliage: differential sensitivity to ozone exposure. Tree Physiol14, 1351–1366Google Scholar
  13. Havranek WM, Pfeifhofer H, Grill D (1990): Pigmentgehalte und Gaswechsel von Tiefund Hochlagenfichten nach chronischer Ozonbelastung. Forstw Cbl109, 200–209CrossRefGoogle Scholar
  14. Havranek WM, Wieser G (1998): Sind Fichten in Hochlagen durch Ozon gefährdet? AFZ/Der Wald8, 432–433Google Scholar
  15. Jensen KF (1981): Response of nine forest tree species to chronic ozone fumigation. Plant Disease Rep57, 914–917Google Scholar
  16. Karnosky DF, Pregitzer KS, Isebrands JG, Hendrey GR (2000): The Aspen FACE (Free-Air Carbon Dioxide and Ozone Enrichment) Experiment: Effects of interacting elevated CO2 and O3 on Carbon and Nitrogen Fluxes.http:/www.urrl.uma.edu/aspenface Google Scholar
  17. Kelly JM, Taylor GE, Edwards NT, Adams MB, Edwards GS, Friend AL (1993): Growth, physiology, and nutrition of Loblolly Pine seedlings stressed by ozone and acidic precipitation: a summary of the ROPIS-South Project. Water, Air and Soil Pollut69, 363–391CrossRefGoogle Scholar
  18. Langebartels C, Ernst D, Heller W, Lütz C, Payer H-D, Sandermann H Jr (1997): Ozone responses of trees: results from controlled chamber exposures at the GSF Phytotron: In: (Sandermann H, Wellburn AP, Heath RL, eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecolog Studies 127, 163–200, Springer-Verlag/BerlinGoogle Scholar
  19. Lefohn AS (1992): Surface level ozone exposures and their effects on vegetation. Lewis Publishers, Chelsea, USA, pp 366Google Scholar
  20. Matyssek R (1998): Ozon-ein Risikofaktor für Bäume und Wälder? Biologie in unserer Zeit 28, Nr 6Google Scholar
  21. Matssek R, Innes JL (1999): Ozone-a risk for trees and forests in Europe. Water, Air and Soil Pollut116, 199–226CrossRefGoogle Scholar
  22. Musselmann RC, Massman WJ (1999): Ozone flux to vegetation and its relation-ship to plant response and ambient air quality standards. Atmos Environ33, 65–73CrossRefGoogle Scholar
  23. Pääkkönen E, Paasisalo S, Holopainen T, Kärenlampi L (1993): Growth and stomatal response of birch (Betula pendula Roth.) clones to ozone in open-air and chamber fumigations. New Phytol125, 615–623CrossRefGoogle Scholar
  24. Pinter PJ Jr, Kimball BA, Wall GW, Lamorte RL, Hunsaker DJ, Adamsen FJ, Fruman KFA, Vugts HF, Hendrey GR, Lewin KF, Nagy J, Johnson HB, Wechsung F, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ (2000): Free-air CO2 enrichment (FACE): blower effects on wheat canopy microclimate and plant development. Agricult Forest Meterol103, 319–333CrossRefGoogle Scholar
  25. Pye JM (1988): Impact of ozone on the growth and yield of trees: a review. J Environ Quat17, 347–364Google Scholar
  26. Reich PB (1987): Quantifying plant response to ozone: a unifying theory. Tree Physiol3, 63–91Google Scholar
  27. Salardino HH, Carroll JJ (1998): Correlation between ozone exposure and visible foliar injury in Ponderosa and Jeffrey Pines. Atmos Environ32, 3001–3010CrossRefGoogle Scholar
  28. Sandermann H Jr, Langebartels C, Heller W (1990): Ozonstreß bei Pflanzen, frühe ‘Memory’-Effekte von Ozon bei Nadelbäumen. UWSF—Z Umweltchem Ökotox2, 14–15Google Scholar
  29. Schlichting H (1965): Grenzschicht-Theorie. 5. Aufl. pp 736, Verlag G Braun/KarlsruheGoogle Scholar
  30. Sciler JR, Tyszko PB, Chevone BI (1994): Effects of long-term ozone fumigation on growth and gas exchange of Fraser Fir seedlings. Environ Pollut85, 265–269CrossRefGoogle Scholar
  31. Shaw PJA, Johnston JPN (1993): Effects of SO2 and O3 on the chemistry and FDA activity of coniferous leaf litter in an open air fumigation experiment. Soil Biol Biochem25, 897–908CrossRefGoogle Scholar
  32. Skelly JM, Innes JL (1994): Waldsterben in the forests of central Europe and eastern North America: Fantasy or Reality? Plant Disease78, 1021–1032Google Scholar
  33. Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1994): An open-air system for exposing forest-canopy branches to ozone pollution. Plant, Cell & Environ17, 211–218CrossRefGoogle Scholar
  34. Wang D, Bormann FH, Karnosky DF (1986): Regional tree growth reductions due to ambient ozone: Evidence from field experiments. Environ Sci Technol20, 1122–1125CrossRefGoogle Scholar
  35. Werner H (1992): Das Indigopapier. Sensitives Element zum Aufbau von Passivsammlern zur Messung von Ozonimmissionen. Schriftenreihe der Forstwiss Fakultät der Universität München und der Bayer Landesanstalt f Wald u Forstwirtschaft. Forstl Forschungsberichte München, Nr 122Google Scholar
  36. Werner H, Fabian P (1996): Passive samplers for spatially high-resolution measurements of ozone and nitrogen dioxide. Poster presented at XVIII Qadrennial Ozone Symposium, L’Aquila, Italy, 12.-21.09.1996Google Scholar
  37. Wulff A, Crossley A, Sheppard LJ (1996): Fine structure of acid mist treated Sitka Spruce needles: open top chamber and field experiments. Ann Bot77, 1–10CrossRefGoogle Scholar
  38. Wulff A, Hänninen O, Tuomarinen A, Kärenlampi L (1992): Open-air exposure of plants to ozone in Knopio; analysis of method. Ann Bot Fennici29, 263–267Google Scholar

Copyright information

© Ecomed Publishers 2002

Authors and Affiliations

  1. 1.Dept. of Ecology, Bioclimatology and Pollution ResearchTechnical University of MunichFreising-WeihenstephanGermany

Personalised recommendations