Phytoremediation to increase the degradation of PCBs and PCDD/Fs

Potential and limitations
  • Bruno F. Campanella
  • Claudia Bock
  • Peter Schröder
Phytoremediation: PCBs and PCDD/Fs


Phytoremediation is already regarded as an efficient technique to remove or degrade various pollutants in soils, water and sediments. However, hydrophobic organic molecules such as PAHs, PCBs and PCDD/Fs are much less responsive to bioremediation strategies than, for example, BTEX or LAS. PCDD/Fs and PCBs represent 3 prominent groups of persistent organic pollutants that share common chemical, toxicological and environmental properties. Their widespread presence in the environment may be explained by their chemical and biological stability. This review considers their fate and dissipation mechanisms. It is then possible to identify major sinks and to understand biological activities useful for remediation. Public health and economic priorities lead to the conclusion that alternative techniques to physical treatments are required. This review focuses on particular problems encountered in biodegradation and bioavailability of PCDD/Fs and PCBs. It highlights the potential and limitations of plants and micro-organisms as bioremediation agents and summarises how plants can be used to augment bacterial activity. Phytoremediation is shown to provide some new possibilities in reducing risks associated with dioxins and PCBs.


Bioavailability bioremediation dioxin dechlorination decontamination degradation environment fungi oxygenase PCBs PCDD/F peroxidase phytoremediation toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abramowicz D (1990): Aerobic and anaerobic biodegradation of PCBs: A review. Crit Rev Biotechnol 10, 241–251Google Scholar
  2. [2]
    Addink R, Olie K (1995): Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environ Sci Technol 29(6) 1425–1435Google Scholar
  3. [3]
    Addink R, Antonioli M, Olie K, Govers H (1996a): Reactions of dibenzofuran and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin on municipal waste incinerator fly ash. Environ Sci Technol 30 (3) 833–836Google Scholar
  4. [4]
    Addink R, Paulus R, Olie K (1996b): Prevention of polychlorinated dibenzo-p-dioxins/dibenzofurans formation on municipal waste incinerator fly ash using nitrogen and sulfur compounds. Environ Sci Technol 30 (7) 2350–2354Google Scholar
  5. [5]
    Adrian L, Manz W, Szewzyk U, Görisch (1998): Physiological characterisation of a bacterial consortium reductively dechlorinating 1,2,3-and 1,2,4-trichlorobenzene. Appl Environ Microbiol 64 (2) 496–503Google Scholar
  6. [6]
    Aihara J (1992): Pourquoi les composés aromatiques sont-ils si stables? Pour la Science 175, 58–65Google Scholar
  7. [7]
    Akimoto Y, Nito S (1994): Removal efficiency of polychlorinated dibenzo-p-dioxins and dibenzofurans in flue gas generated from municipal solid waste incinerators by water spray into the gas flow. Chemosphere 28 (8) 1417–1432Google Scholar
  8. [8]
    Alcock RE, Jones KC (1996): Dioxins in the environment: a review of trend data. Environ Sci Technol 30 (11) 3133–3143Google Scholar
  9. [9]
    Anderson T, Guthrie EA, Walton BT (1993): Bioremediation in the rhizosphere. Environ Sci Technol 27 (13) 2630–2636Google Scholar
  10. [10]
    Anderson P, Hites R (1996): OH radical reactions: the major removal pathway for polychlorinated biphenyls from the atmosphere. Environ Sci Technol 30, 1756–1763Google Scholar
  11. [11]
    Anonymous (2000): Molecular mechanism of dioxin action. In:http:/ / (Dioxin R US, ed)Google Scholar
  12. [12]
    Aprill W, Sims R (1990): Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20 (1–2) 253–265Google Scholar
  13. [13]
    Arthur MF, Fréa JI (1989): 2,3,7,8-TCDD: aspects of its important properties and its potential biodegradation in soil. J Environ Qual 18 (1) 1–11Google Scholar
  14. [14]
    Atkinson R (1991): Atmospheric lifetimes of dibenzo-p-dioxins and dibenzofurans. The Science of the Total Environment 104, 17–33Google Scholar
  15. [15]
    Bacci E, Cerejeira M, Gaggi C, Chemello G, Calamari D, Vighi M (1992): Chlorinated dioxins: volatilisation from soils and bioconcentration in plant leaves. Bull Environ Contam Toxicol 48, 401–408Google Scholar
  16. [16]
    Ballerstedt H, Kraus A, Lechner U (1997): Reductive dechlorination of 1,2,3,4-TCDD and its products by anaerobic mixed cultures from Saale river sediment. Environ Sci Technol 31 (6) 1749–1753Google Scholar
  17. [17]
    Banks M, Lee E, Schwab A (1999): Evaluation of dissipation mechanisms for benzo-a-pyrene in the rhizosphere of Tall Fescue. J Environ Qual 28, 294–298Google Scholar
  18. [18]
    Barclay C, Farquhar G, Legge R (1995): Biodegradation and sorption of polyaromatic hydrocarbons byPhanerochaete chrysosporium. Appl Microbiol Biotechnol 42 (6) 958–963Google Scholar
  19. [19]
    Barkovskii AL, Adriaens P (1995): Reductive dechlorination of tetrachloro-dibenzo-p-dioxin partitioned from Passaic River sediments in an autochthonous microbial community. Organohalogen Compounds 24, 17–21Google Scholar
  20. [20]
    Barkovskii AL, Adriaens P (1996): Microbial dechlorination of historically present and freshly spiked chlorinated dioxins and diversity of dioxin-dechlorinating populations. Applied and Environmental Microbiology 62 (12) 4556–4562Google Scholar
  21. [21]
    Barr D, Aust S (1994): Mechanisms White Rot Fungi use to degrade pollutants. Environ Sci Technol 28 (2) 78a-87aGoogle Scholar
  22. [22]
    Beaudette L, Davies S, Fedorak P, Ward O, Pickard M (1998): Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of White Rot Fungi. Appl Environ Microbiol 64 (6) 2020–2025Google Scholar
  23. [23]
    Bedard D, Unterman R, Bopp L, Brennan M, Haberl M, Johnson C (1986): Rapid assay for screening and characterising micro-organism for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol 51, 4, 761–768Google Scholar
  24. [24]
    Behrooz Ghorishi S, Altwicker E, (1995): Formation of polychlorinated dioxins, furans, benzenes and phenols in the post-combustion region of a heterogeneous combustor: effect of bed material and post-combustion temperature. Environ Sci Technol 29 (5) 1156–1162Google Scholar
  25. [25]
    Bell RM, Failey RA (1991): Plant uptake of organic pollutants. In: Organic contaminants in the environment (Jones KC, ed) Elsevier Applied Science, London, pp 189–206Google Scholar
  26. [26]
    Bertazzi PA (1997): Dioxins in the environment: follow-up of the population at Seveso. Louvain Med 116, 113–121Google Scholar
  27. [27]
    Birnbaum LS (1993): EPA’s reassessment of dioxin risk: directed health research. Chemosphere 27 (1–3) 469–475Google Scholar
  28. [28]
    Bligh E, Dyer W (1959): A rapid method of total lipid extraction and purification, Can J Biochem Physiol 37, 8, 911–917Google Scholar
  29. [29]
    Bock C, Harms H (1996): Metabolism of selected polychlorobiphenyl congeners in plant cell cultures. Organohalogen Comp 28, 53–75Google Scholar
  30. [30]
    Bock C (1999): Untersuchungen des Metabolismus von 3,3′,4,4′-Tetrachlorobiphenyl (PCB 77) und 2,2′,5-Trichlorobiphenyl (PCB 18) in ausgewählten pflanzlichen In-vitro-Systemen, Dissertation, Techn Univ BraunschweigGoogle Scholar
  31. [31]
    Boyle A, Phelps C, Young L (1999): Isolation from estuarine sediments of aDesulfouibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl Environ Microbiol 65 (3) 1133–1140Google Scholar
  32. [32]
    Brazil G, Kenefik L, Callanan M, Haro A, de Lorenzo V, Dowling D, O’Gara F (1995): Construction of a rhizosphere Pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61 (5) 1946–1952Google Scholar
  33. [33]
    Briggs G, Bromilow R, Evans A (1982): Relationships between lipophilicity and root uptake and translocation of nonionised chemicals by Barley Pestic Sci 13, 495–504Google Scholar
  34. [34]
    Briggs G, Bromilow R, Evans A, Williams M (1983): Relationships between lipophilicity and the distribution of non-ionised chemicals in Barley shoots following uptake by the roots. Pestic Sci 14, 492–500Google Scholar
  35. [35]
    Buckley E (1982): Accumulation of airborne PCBs in foliage, Science 216, 520–522Google Scholar
  36. [36]
    Butler J, Groeger A, Fletcher J (1992): Characterization of monochlorinated biphenyl products formed by plant cells. Bull Environ Contam Toxicol 49, 821–826Google Scholar
  37. [37]
    Buyanovsky GA, Kremer R, Gadja A, Kazemi H (1995): Effect of corn plant and rhizosphere populations on pesticide degradation. Bull Environ Contam Toxicol 55, 689–696Google Scholar
  38. [38]
    Cains P, McCausland L, Fernandes A, Dike P (1997): PCDD/F formation in incineration: effects of fly ash and carbon source. Environ Sci Technol 31 (3) 776–785Google Scholar
  39. [39]
    Calamari D, Bacci E, Focardi S, Gaggi C, Morosini M, Vighi M (1991): Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons. Environ Sci Technol 25 (8) 1489–1495Google Scholar
  40. [40]
    Campanella B, Paul R (2000): Presence, in the rhizosphere and leaf extracts of Zucchini (Cucurbita pepo L.) and Melon (Cucumis melo L.), of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. I J Phytorem 2 (2) 145–158Google Scholar
  41. [41]
    Chappell J (1997): Phytoremediation of TCE in groundwater using Populus, EPA, USA, 54 ppGoogle Scholar
  42. [42]
    Choudhry GG, Webster GRB (1989): Environmental photochemistry of PCDDs. 2. Quantum yields of direct phototransformation of 1,2,3,7-tetra-, 1,3,6,8-tetra-, 1,2,3,4,6,7,8-hepta-, and 1,2,3,4,6,7,8,9-octa-chlorodibenzo-p-dioxin in aqueous acetonitrile and their sunlight half-lives. J Agric Food Chem 37, 254–261Google Scholar
  43. [43]
    Codex Alimentarius Commission (1999): ‘Discussion paper on dioxins’ Report No CX/FAC 00/26. FAO/WHO, Beijing, ChinaGoogle Scholar
  44. [44]
    Coleman J, Blake-Kalff M, Emyr Davies T (1997): Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends in Plant Sci 2 (4) 144–151Google Scholar
  45. [45]
    nseil Fédéral Suisse (1998): Ordonnance sur les atteintes portées aux sols (OSol). Arrêté Fédéral: RO 1998 1854, 12 ppGoogle Scholar
  46. [46]
    Dakora F, Joseph C, Phillips, D (1993): Alfalfa (Medicago sativa L.) root exudates contain isoflavonoïds in the presence ofRhizobium meliloti. Plant Physiol 101, 819–824Google Scholar
  47. [47]
    Dietrich D, Hickey W, Lamar R (1995): Degradation of 4,4′-dichlorobiphenyl, 3,3′,4,4′-tetrachlorobipnenyl, and 2,2′,4,4′, 5,5′-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microb 61 (11) 3904–3909Google Scholar
  48. [48]
    Donnely P, Hedge R, Fletcher J (1994): Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28 (5) 981–988Google Scholar
  49. [49]
    Donnelly P, Fletcher J (1995): PCB metabolism by ectomycorrhizal fungi. Bull Environ Contam Toxicol 54, 507–513Google Scholar
  50. [50]
    Durkee J (1999): Persistent organic pollutants pose serious challenges to urban areas. IETC INSIGHT 5, (http://maestro.unep.or.ip/ietc/publications/insight/may-99/4.asp)Google Scholar
  51. [51]
    A (1999): ‘Persistent bioaccumulative toxic (PBT) chemicals; proposed rule’, Rep No 40 CFR Part 372. EPA, USAGoogle Scholar
  52. [52]
    Erickson LE, Banks M, Davis L, Schwab A, Muralidharan N, Reilley K (1998): Using vegetation to enhance in situ bioremediation. In:http:// Google Scholar
  53. [53]
    Ferro AM, Sims RC, Burgbee B (1994): Hycrest Crested Wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23, 272–279Google Scholar
  54. [54]
    Fetzner S (1998): Bacterial dehalogenation. Appl Microbiol Biotechnol 50 (6) 633–657Google Scholar
  55. [55]
    Field J, de Jong E, Costa G, de Bont J (1992): Biodegradation of polycyclic aromatic hydrocarbons by new isolates of White Rot Fungi. Appl Environ Microbiol 58 (7) 2219–2226Google Scholar
  56. [56]
    Figge K, Metzdorf U, Nevermann J (1993): Bakterielle Mineralisierung von Dibenzofuran, Dibenzo-p-dioxin und 1,2,4,5-Tetrachlorobenzol in Böden. UWSF — Z Umweltchem Ökotox 5 (3) 122–130Google Scholar
  57. [57]
    Fletcher J, Donnely P, Hedge R (1995): Plant assisted polychlorinated biphenyl (PCB) biodegradation. Proceedings of the 14th annual symposium on current topics in plant biochemistry, physiology and molecular biology, 1995, University of Missouri, Columbia, MO, USAGoogle Scholar
  58. [58]
    Focht D (1995): Strategies for the improvement of aerobic metabolism of polychlorinated biphenyls. Curr Opin Biotechnol 6, 341–346Google Scholar
  59. [59]
    Fries G (1995): Transport of organic environmental contaminants to animal products. Rev Environ Contam Tox 141, 70–109Google Scholar
  60. [60]
    Fries G, Paustenbach D, Mather D, Luksemburg W (1999): A congener specific evaluation of transfer of chlorinated dibenzo-p-dioxins and dibenzofurans to milk of cows following ingestion of pentachlorophenol-treated wood. Environ Sci Technol 33 (8) 1165–1170Google Scholar
  61. [61]
    Friesen JK, Muir DCG, Webster GRB (1990): Evidence of sensitized photolysis of polychlorinated dibenzo-p-dioxins in natural waters under sunlight conditions. Environ Sci Technol 24 (11), 1739–1744Google Scholar
  62. [62]
    Friesen KJ, Loewen MD, Foga MM (1993): Environmental aquatic photodegradation of chlorinated dibenzofurans and their photoproducts. Organohalogen Compounds 12, 135–137Google Scholar
  63. [63]
    Gilbert E, Crowley D (1997): Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microb 63 (5) 1933–1938Google Scholar
  64. [64]
    Gonzales MJ (1996): Levels of PCDDs and PCDFs in human milk from populations of Madrid and Paris. Bull Environ Contam Toxicol 56, 197–204Google Scholar
  65. [65]
    Gullet BK (1992): Mechanistic steps in the production of PCDD and PCDF during waste combustion. Chemosphere 25 (7–10) 1387–1392Google Scholar
  66. [66]
    Groeger A, Fletcher J (1988): The influence of increasing chlorine content on the accumulation and metabolism of polychlorinated biphenyls (PCBs) by Paul’s Scarlet Rose cells. Plant Cell Rep 7, 329–332Google Scholar
  67. [67]
    Harner T, Mackay D (1995): Measurement of Octanol-Air partition coefficients for chlorobenzenes, PCBs and DDT. Environ Sci Technol 29 (6) 1599–1606Google Scholar
  68. [68]
    Hedge RS, Fletcher J (1996): Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32 (12) 2471–2479Google Scholar
  69. [69]
    Heeschen W, Bliithgen A, Steimer J (1993): Allgemeines über Aufnahme, Verteilung, Metabolismus, Retention und Ausscheidung Polychlorierter Biphenyle beim Säuger, in: Carry over von polychlorierten Biphenylen, Angewandte Wissenschaft 418, Schriftenreihe des Bundesministerium für Ernährung, Landwirtschaft und Forsten, Reihe A: Angewandte Wissenschaft, Heft 418, Landwirtschaftsverlag GmbH, Münster, pp 33–43Google Scholar
  70. [70]
    Hermanson M, Hites R (1990): Polychlorinated biphenyls in tree bark. Environ Sci Technol 24, 666–671Google Scholar
  71. [71]
    Hoekstra E, De Weerd H, De Leer E, Brinkman U (1999) Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ Sci Technol 33 (15) 2543–2549Google Scholar
  72. [72]
    Huff J (1992): 2,3,7,8-TCDD: a potential and complete carcinogen in experimental animals. Chemosphere 25 (1–2) 173–176Google Scholar
  73. [73]
    Hülster A, Marschner H (1994): The influence of root exudates on the uptake of PCDD/PCDF by plants. Organohalogen compounds 20, 31–34Google Scholar
  74. [74]
    Hülster A, Marschner H (1995): Verlagerung von PCDD/F aus dem Boden in verschiedene Pflanzenarten. Hohenheimer Umwelttagung 27, 35–43Google Scholar
  75. [75]
    International Programme on Chemical Safety (1989): Environmental Health Criteria 88, Polychlorinated dibenzo-para-dioxins and dibenzofurans. World Health Organisation (WHO) Geneva, SwitzerlandGoogle Scholar
  76. [76]
    Joshi D, Gold M (1994): Oxidation of dibenzo-p-dioxin by lignin peroxidase from the basidiomycete Phanerochaete chrysosporium. Biochemistry 33, 10969–10976Google Scholar
  77. [77]
    Kalevi K, Donner A, Kiviranta H, Vartiainen T, Jorgensen K (1998): Occurrence of polychlorinated dibenzo-p-dioxins and dibenzofurans as impurities in wood preservative contaminated and remediated soil. In: Contaminated Soil ’98 (Telford T, ed) Vol 2, pp 1079–1081, Ediburgh, UKGoogle Scholar
  78. [78]
    Kaminsky L, Kennedy M, Adams S, Guengerich F (1981): Metabolism of dichlorobiphenyls by highly purified isoenzymes of rat liver cytochrome P-450. Biochemistry 20, 7379–7384Google Scholar
  79. [79]
    Kew GA, Schaum J, White P, Evans T (1989): Review of plant uptake of 2,3,7,8-TCDD from soil and potential influences of bioavailability. Chemosphere 18 (1–8) 1313–1318Google Scholar
  80. [80]
    Law FC, Gudaitis JA (1994): A preliminary assessment of human health risks due to consumption of fish contaminated by dioxins and furans in the Fraser and Thompson rivers. Chemosphere 28 (6) 1079–1086Google Scholar
  81. [81]
    Lee I, Fletcher J (1992): Involvement of mixed function oxidase systems in polychlorinated biphenyl metabolism by plant cells. Plant Cell Rep 11, 97–100Google Scholar
  82. [82]
    Leigh MB, Fletcher J, Nagle DP, Mackova M, Macek T (2000): Field studies examining rhizosphere-enhanced PCB degradation in the Czech Republic. Proceedings of the Fifth International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe, September 12–14, 2000, Prague, Czech RepublicGoogle Scholar
  83. [83]
    Lemieux P, Lutes C, Abbott J, Aldous K (2000): Emissions of polychlorinated dibenzo-p-dioxins and polychlorodibenzofurans from the open burning of household waste in barrels. Environ Sci Technol 34 (3) 377–384Google Scholar
  84. [84]
    Liss S, Baker K (1994): Anoxic/anaerobic bioremediation. In: Bioremediation (Baker K, Herson D, eds) pp 297–342Google Scholar
  85. [85]
    May R, Schröder P, Sandermann H (1997): An efficient two-stage model fungal reactor designed to treat PAH contaminated soil. Environ Sci Technol 31 (9) 2626–2633Google Scholar
  86. [86]
    McCrady JK, McFarlane C, Gander LK (1990): The transport and fate of 2,3,7,8-TCDD in soybean and corn. Chemosphere 21 (3) 359–376Google Scholar
  87. [87]
    McCrady JK, Maggard SP (1993): Uptake and photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin sorbed to grass foliage. Environ Sci Technol 27 (2) 343–350Google Scholar
  88. [88]
    McCrady J (1994): Vapor-phase 2,3,7,8-TCDD sorption to plant foliage: a species comparison. Chemosphere 28 (1) 207–216Google Scholar
  89. [89]
    Meckes M, Tillman J (1997): Removal of PCBs from a contaminated soil using CF-Systems solvent extraction processes. J Air and Waste Manag Assoc 47 (10) 1119–1124Google Scholar
  90. [90]
    Mondello F, Turcich M, Lobos J, Erickson B (1997): Identification and Modification of Biphenyl Dioxygenase Sequences That Determine the Specificity of Polychlorinated Biphenyl Degradation. Appl Environ Microbiol 63 (8) 3096–3103Google Scholar
  91. [91]
    Morimoto K, Kenji T (1995): Effect of humic substances on the enzymatic formation of OCDD from PCP. Organohalogen Compounds 23, 387–392Google Scholar
  92. [92]
    Mougin C, Chaplain V, Gaillardon P (1996): Le traitement biologique des sols pollués par des composés organiques: l’intérêt des champignons filamenteux. Le Courrier de l’Environnnement 28, 1–8Google Scholar
  93. [93]
    Mukerjee D (1998): Health impart of polychlorinated dibenzo-p-dioxins: a review. J Air and Waste Manag Assoc 48, 157–165Google Scholar
  94. [94]
    Munch JC, Rosenbrock P (2000): Microbial dechlorination of organic pollutants in anaerobic soil compartments. Proceedings of the InterCOST Workshop on Bioremediation, November 15–18, 2000, Sorrento, Italy, p 100Google Scholar
  95. [95]
    Neumann G, Hülster A, Marschner H (1997): Identifizierung PCDD/ F-mobilisierender Verbindungen in Wurzelexsudaten von Zucchini. In: Rhizosphärenprozesse, Umweltstress und Ökosystemstabilität (Merbach W, ed) pp 167–175Google Scholar
  96. [96]
    Noorman F, Vis P (1995): Successful soil purification test by Ecotechniek. In: Contaminated soil ’95 (Van Den Brink W, Bosman R, Arendt F, eds) pp 1013–1022Google Scholar
  97. [97]
    Norris G, Al-dhahair Z, Birnstingl J (1998): A case study of the remediation of soil contaminated with polychlorinated biphenyls (PCBs) using low temperature thermal desorption. Proceedings of the Sixth International Conference on Contaminated Soil. (Telford T, ed) Vol 2, pp 1079–1081, Edinburgh, UKGoogle Scholar
  98. [98]
    Oberg LG, Glas B, Swanson SE, Rappe C, Paul KG (1990): Peroxidase-catalyzed oxidation of chlorophenols to polychlorinated dibenzo-p-dioxins and dibenzofurans. Arch Environ Contain Toxicol 19, 930–938Google Scholar
  99. [99]
    Oberg LG, Rappe C (1992): Biochemical formation of PCDD/Fs from chlorophenols. Chemosphere 25 (1–2), 49–52Google Scholar
  100. [100]
    Paterson S, Mackay D, McFarlane C (1994): A model of organic chemical uptake by plants from soil and the atmosphere. Environ Sci Technol 28 (13) 2259–2266Google Scholar
  101. [101]
    Paterson S, Mackay D, Tam D, Shiu W (1990): Uptake of organic chemicals by plants: a review of processes, correlations and models. Chemosphere 21 (3) 297–331Google Scholar
  102. [102]
    Pesatori AC, Consonni D, Tironi A, Landi M (1992): Cancer morbidity in the Seveso area, 1976–1986. Chemosphere 25 (1–2) 209–212Google Scholar
  103. [103]
    Polder M, Hulzebos E, Jager D (1995): Validation of models on uptake of organic chemicals by plant roots. Environ Tox Chem 14 (9) 1615–1623Google Scholar
  104. [104]
    Puri R, Qiuping Y, Kapila S, Lower W, Puri V (1997): Plant uptake and metabolism of polychlorinated biphenyls (PCBs). In: Plants for environmental studies (Wang W, Gorsuch J, Hughes J, eds) Lewis Publishers, NY, pp 481–513Google Scholar
  105. [105]
    Reilley KA, Banks MK, Schwab AP: (1996): Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25, 212–219CrossRefGoogle Scholar
  106. [106]
    Reischl A, Reissinger M, Thoma H, Hutzinger O (1989): Uptake and accumulation of PCDD/F in terrestrial plants: basic considerations. Chemosphere 19 (1–6) 467–474Google Scholar
  107. [107]
    Rhee G, Sokol R, Bethoney C, Bush B (1993): Dechlorination of polychlorinated biphenyls by Hudson river sediment organisms: specificity to the chlorination pattern of congeners. Environ Sci Technol 27 (6) 1190–1192Google Scholar
  108. [108]
    Sacchi G, Vigano P, Fortunati G, Coccuci S (1986): Accumulation of 2,3,7,8-TCDD from soil and nutrient solution by bean and maize plants. Experientia 42, 586–588Google Scholar
  109. [109]
    Safe S, Robertson L, Safe L, Parkinson A, Bandiera S, Sawyer T, Campbell M (1982): Halogenated biphenyl: Molecular toxicology. Can J Physiol Pharmacol 60, 1057–1064Google Scholar
  110. [110]
    Safe S, Biegel L, Harris M, Narasimhan T, Lui H, Fernandez P (1992): Inhibition of estrogenand growth factor-induced proliferation of human breast cancer cell lines by TCDD: characterization and mechanistic studies. Chemosphere 25 (1–2) 83–86Google Scholar
  111. [111]
    Schmidt S (1998): Biodegradation of diaryl ether pesticides. In: Biodegradation of dioxins and furans (Wittich RM, ed) R.G. Landes & Springer Verlag, London, UK, pp 229–281Google Scholar
  112. [112]
    Schnoor JL, Licht L, McCutcheon S, Wolfe N, Carreira L (1995): Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29 (7) 318a-323aGoogle Scholar
  113. [113]
    Schröder P (1997): Fate of Glutathione S-conjugates in plants: cleavage of the glutathione moiety. In: Regulation of enzymatic systems detoxifying xenobiotics in plants (Hatzios KK, ed) Kluwer Acad. Publ. The Netherlands, pp 233–244Google Scholar
  114. [114]
    Schulte E, Acker L (1974): Identifizierung und Metabolisierbarkeit von PCBs. Naturwissenschaften 61, 79–80Google Scholar
  115. [115]
    Schultz D (1993): PCDD/PCDF: German policy and measures to protect man and the environment. Chemosphere 27 (1–3) 501–507Google Scholar
  116. [116]
    Schwab A, Banks M (1994): Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. In: Bioremediation through rhizosphere (American Chemical Society, ed) 563, 132–141Google Scholar
  117. [117]
    Shiu WY, Doucette W, Gobas F, Andren A, Mackay D (1988): Physical-chemical properties of chlorinated dibenzo-p-dioxins. Environ Sci Technol 22 (6) 651–658Google Scholar
  118. [118]
    Siciliano SD, Germida JJ (1998): Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6, 65–79Google Scholar
  119. [119]
    Simonich SL, Hites RA (1995): Organic pollutant accumulation in vegetation. Environ Sci Technol 29 (12) 2905–2912Google Scholar
  120. [120]
    Standley L, Hites RA (1991): Chlorinated organic contaminants in the atmosphere. In: Organic contaminants in the environment (Jones KC, ed) Elsevier Applied Science, Lancaster,UK, pp 1–32Google Scholar
  121. [121]
    Sun B, Cole J, Sanford R, Tiedje J (2000): Isolation and characterization ofDesulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol 66 (6) 2408–2413Google Scholar
  122. [122]
    Sutherland J, Selby A, Freeman J, Evans F, Cerniglia C (1991): Metabolism of phenanthrene byPhanerochaete chrysosporium. Appl Environ Microbiol 57 (11) 3310–3316Google Scholar
  123. [123]
    Svenson A, Kjeller LO, Rappe C (1989): Enzyme-mediated formation of 2,3,7,8-tetra substituted chlorinated dibenzodioxins and dibenzofurans. Environ Sci Technol 23 (7), 900–902Google Scholar
  124. [124]
    Sweetman A, Jones K (2000): Declining PCB concentrations in the UK atmosphere: evidence and possible causes. Environ Sci Technol 34 (5) 863–869Google Scholar
  125. [125]
    Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996): Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the White Rot FungusPhanerochaete sordida YK-624. Appl Environ Microbiol 62 (12) 4323–4328Google Scholar
  126. [126]
    Takeshita R, Akimoto Y, Nito S (1992): Relationship between the formation of PCDD/F and the control of combustion, hydrogen chloride level in flue gas and gas temperature in a municipal waste incinerator. Chemosphere 24 (5) 589–598Google Scholar
  127. [127]
    Toussaint M, van der Steen J, Slot P, de Wolf J, Beurskens J, Parsons J (1995): Reductive dechlorination of chlorinated dibenzo-pdioxins by a bacterial consortium isolated frome Lake Ketelmeer sediment. In: Contaminated soil ’95 (Van Den Brink W, Bosman R, Arendt F, eds) pp 423–425Google Scholar
  128. [128]
    Trapp S (1995): Plant contamination: modeling and simulation of organic chemical processes. Lewis Publishers, p 254Google Scholar
  129. [129]
    Tucker B, McLean J, Brar J, Anderson A (1999): Soil composition and suppression of pyrene mineralisation byPhanerochaete chrysosporium. Proceedings of the 10th annual conference on hazardous waste research, pp 325–332Google Scholar
  130. [130]
    Van den Berg M, Birnbaum L, Bosveld BTC, Brunström B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, van Leeuwen FXR, Liem AKD, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M (1998): Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspec 106 (12) 775–792Google Scholar
  131. [131]
    Vogel T, Schlegel T (1998): Anaerobic/aerobic bioremediation of PCB-contaminated soil and sediment. Proceedings of the Sixth International Conference on Contaminated Soil (Telford T, ed) Vol. 1, pp 523–530, Edinburgh, UKGoogle Scholar
  132. [132]
    Wagner HC, Schramm KW, Hutzinger O (1990): Biogenic polychlorinated dioxin and furan from trichlorophenol. Organohalogen Compounds 3, 453–456Google Scholar
  133. [133]
    Wagrowski D, Hites R (1998): Partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans between the atmosphere and corn. Environ Sci Technol 32 (16) 2389–2393Google Scholar
  134. [134]
    Welsch-Pausch K, McLachlan M, Umlauf G (1995): Determination of the principal pathways of polychlorinated dibenzo-p-dioxins and dibenzofurans to Lolium multiflorum (Welsh Ray Grass). Environ Sci Technol 29 (4) 1090–1098Google Scholar
  135. [135]
    WHO (1998): Assessment of the health risk of dioxins: re-evaluation of the Tolerable Daily Intake (TDI). WHO European Centre for Environment and Health International Programme on Chemical Safety, Geneva, SwitzerlandGoogle Scholar
  136. [136]
    Wikström E, Tysklind M, Marklund S (1999): Influence of variation in combustion conditions on the primary formation of chlorinated organic micropollutants during municipal solid waste combustion. Environ Sci Technol 33 (23) 4263–4269Google Scholar
  137. [137]
    Wikström E, Marklund S (2000): Secondary formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes and phenols during MSW combustion. Environ Sci Technol 34 (4) 604–609Google Scholar
  138. [138]
    Wilken A, Bock C, Bokern M, Harms H (1995): Metabolism of different PCB congeners in plant cell cultures. Environ Toxicol Chem 14 (12) 2017–2122Google Scholar
  139. [139]
    Wood JM (1982): Chlorinated hydrocarbons: oxidation in the biosphere. Environ Sci Technol 16 (5) 291a-297aGoogle Scholar
  140. [140]
    Yadav J, Quensen J, Tiedje J, Reddy C (1995): Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1252 and 1260) by the White Rot FungusPhanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol 61 (7) 2560–2565Google Scholar

Copyright information

© Ecomed Publishers 2002

Authors and Affiliations

  • Bruno F. Campanella
    • 1
  • Claudia Bock
    • 2
  • Peter Schröder
    • 3
  1. 1.Environmental Toxicology LaboratoryAgricultural UniversityGemblouxBelgium
  2. 2.Zentrales Analytisches LaborBTU CottbusCottbusGermany
  3. 3.Institute for Soil EcologyGSF-National Research Center for Environment and Health, NeuherbergOberschleißheimGermany

Personalised recommendations