Advertisement

The Mathematical Intelligencer

, Volume 28, Issue 2, pp 51–59 | Cite as

Euclidean geometry and physical space

  • David E. Rowe
Department Years Ago

Keywords

Mathematical Intelligencer Euclidean Geometry Spherical Geometry Pythagorean Theorem Mathematical Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberto Bonola, 1955.Non-Euclidean Geometry: A Critical and Historical Study of its Development. New York: Dover.Google Scholar
  2. Walter Kaufmann-Bühler, 1981.Gauss: A Biographical Study, New York: Springer-Verlag.CrossRefGoogle Scholar
  3. Lewis Carroll, 1885.Euclid and his Modern Rivals. London: Macmillan, repr. New York: Dover, 1973.Google Scholar
  4. Leo Corry, 2004.David Hilbert and the Axiomatization of Physics (1898–1918), Dordrecht: Kluwer, 2004.CrossRefzbMATHGoogle Scholar
  5. G. Waldo Dunnington, 2004.Carl Friedrich Gauss, Titan of Science, New York: Haffner, 1955; repr. Mathematical Association of America, 2004.zbMATHGoogle Scholar
  6. G. Gabriel,et al. eds. 1980.Gottlob Frege Philosophical and Mathematical Correspondence. Chicago: University of Chicago Press.Google Scholar
  7. C. F. Gauss, 1828.Disquisitiones generates circa superficies curvas. Göttingen: Dieterich.Google Scholar
  8. —— 1900. Gauss Werke Bd. VIII, Göttingen: Königliche Gesellschaft der Wissenschaften. T. L. Heath, ed., 1956.The Thirteen Books of Euclid’s Elements. New York: Dover. 3 vols.Google Scholar
  9. David Hilbert, 1899. “Die Grundlagen der Geometrie,” inFestschrift zur Feier der Enthüllung des Gauss-Weber Denkmals. Lepzig: B.G. Teubner. Pp. 3–92.Google Scholar
  10. D. Hilbert and S. Cohn-Vossen, 1965.Geometry and the Imagination. New York, Chelsea.Google Scholar
  11. Isaac Newton, 1687.Philosophiae Naturalis Principia Mathematica. London: Joseph Streater.Google Scholar
  12. Isaac Newton, 1726.Philosophiae Naturalis Principia Mathematica, 3rd ed., Alexandre Koyre, I. Bernard Cohen, and Anne Whitman, eds. Cambridge, Mass.: Harvard University Press, 1972.Google Scholar
  13. Moritz Pasch, 1882.Vorlesungen über neueren Geometrie. Leipzig: Teubner.Google Scholar
  14. Bernhard Riemann, 1854. “Über die Hypothesen, welche der Geometrie zugrunde liegen,”Abhandlungen der Kgl. Gesellschaft der Wissenschaften zu Göttingen.13 (1867): 133–152.Google Scholar
  15. ——. 1892.Bernard Riemann’s Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, hrsg. unter Mitwirkung von R. Dedekind und H. Weber, 2. Aufl. Leipzig: Teubner.Google Scholar
  16. B. A. Rosenfeld, 1988.A History of Non Euclidean Geometry: Evolution of the Concept of a Geometric Space. Trans. Abe Shenitzer. New York: Springer-Verlag.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • David E. Rowe
    • 1
  1. 1.Fachbereich 17-MathematikJohannes Gutenberg UniversityMainzGermany

Personalised recommendations