Environmental Science and Pollution Research

, Volume 1, Issue 3, pp 161–171 | Cite as

Ancient atmosphere- Validity of ice records

  • Zbigniew Jaworowski
Review Article


Clathrate IAHS Publication Depth Hoar Present Atmospheric Level Ancient Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bender, M. L.;D. Labeyrie;D. Raynaud;C. Lorius: Isotopic composition of atmospheric CO2 in ice linked with deglaciation and global primary productivity. Nature318, 349–352 (1985)CrossRefGoogle Scholar
  2. Berner, W.;H. Oeschger;B. Stauffer: Information on the CO2 cycle from ice core studies. Radiocarbon22, 227–235 (1980)Google Scholar
  3. Boutron, C. F.;C. C. Patterson;V. N. Pertrov;N. I. Barkov: Lead concentration changes in Antarctic ice during the Wisconsin/Holocene transition. Atmos. Environ.21, 1197–1202 (1987)CrossRefGoogle Scholar
  4. Craig, H.;C. C. Chou: Methane: the record in polar ice cores. Geophys. Res. Lett.9, 1221–1224 (1982)CrossRefGoogle Scholar
  5. Craig, H.;C. C. Chou;J. A. Welhan;C. M. Stevens;A. Engelkemeir: The isotopic composition of methane in polar ice cores. Science242, 1535–1539 (1988 a)CrossRefGoogle Scholar
  6. Craig, H.;Y. Horibe;T. Sowers: Gravitational separation of gases and isotopes in polar ice caps. Science242, 1675–1678 (1988 b)CrossRefGoogle Scholar
  7. Davis, R. E.: Links between snowpack physics and snowpack chemistry,in:T. D. Davies;M. T. Tranter;H. G. Jones (eds): Seasonal Snowpacks — Processes of Compositional Changes. Berlin, Springer-Verlag, pp. 115–137 (1991)Google Scholar
  8. Delmas, R. J.;J. M. Ascencio;M. Legrand: Polar ice evidence that atmospheric CO2 20,000yr BP was 50 % of present. Nature284, 155–157 (1980)CrossRefGoogle Scholar
  9. Etheridge, D. M.;G. I. Pearman;F. De Silva: Atmospheric trace-gas variations as revealed by air trapped in an ice core from Low Dome, Antarctica. Ann. Glaciol.10, 1–6 (1988)Google Scholar
  10. Etheridge, D. M.;G. I. Pearman;P. J. Fraser: Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus44B, 282–294 (1992)Google Scholar
  11. Friedli, H.;H. Lotscher;H. Oeschger;U. Siegenthaler;B. Stauffer: Ice core record of the13C/12C ratio of atmospheric CO2 in the past two centuries. Nature324, 237–238 (1986)CrossRefGoogle Scholar
  12. Friedli, H.;E. Moor;H. Oeschger;U. Siegenthaler;B. Stauffer:13C/12C ratios in CO2 extracted from antarctic ice. Geophys. Res. Lett.11(11), 1145–1148 (1984)CrossRefGoogle Scholar
  13. Gow, A. J.: Deep core studies of the accumulation and densification of snow at Byrd Station and Little America V, Antarctica. U.S. Army Cold Regions Research and Engineering Laboratory, Report No. 197, pp. 45 (1968)Google Scholar
  14. Gow, A. J.: Relaxation of ice in deep drill cores from Antarctica: J. Geophys. Res.76, 2633–2541 (1971)CrossRefGoogle Scholar
  15. Gow, A. J.;T. Williamson: Rheological implications of the internal structure and crystal fabric of the West Antarctic ice sheet as revealed by deep core drilling at Byrd Station. Geological Soc. Amer. Bulletin87, 1665–1677 (1976)CrossRefGoogle Scholar
  16. Heyke, H.-E.: Zu den CO2-Klimakurven aus Eisbohrkernen. Erdöl und Kohle-Erdgas-Petrochemie45, 360–362 (1992 a)Google Scholar
  17. Heyke, H. E.: Gasblasen im Eis sind brüchiges Fundament für die CO2-Steuer. Fusion13, 32–39 (1992 b)Google Scholar
  18. Heyke, H. E.: Zu den CO2-Klimakurven aus Eisbohrkernen. Erdöl und Kohle-Erdgas-Petrochemie45, 208–214 (1992 c)Google Scholar
  19. Hobbs, B. E.;W. D. Means;P. F. Williams: An Outline of Structural Geology. New York, John Wiley & Sons, Inc. 1976, pp. 576Google Scholar
  20. IPCC: Climate Change — The IPCC Scientific Assessment. Cambridge, Cambridge University Press 1990, pp. 364Google Scholar
  21. Jaworowski, Z.;T. V. Segalstad &N. Ono: Do glaciers tell a true atmospheric CO2 story? The Sci. Tot. Environ.114: 227–284 (1992)CrossRefGoogle Scholar
  22. Jaworowski, Z.; S. T. V. Segalstad & V. Hisdal: Atmospheric CO2 and Global warming: a critical review. Norsk Polarinstitutt, Rapportserie Nr. 39, pp. 75 (1990)Google Scholar
  23. Jones, S. J.; G. P. Johari: Effect of hydrostatic pressure on air bubbles in ice. Isotopes and Impurities in Snow and Ice. IAHS Publication No.118, 23–28 (1977)Google Scholar
  24. Korotkevich, E. S.;V. N. Petrov;N. I. Barkov;L. N. Sukhonosova: Rezul’taty izucheniya vertikalnoi struktury lednikovogo pokrova Antarktydy v raione stantsii Vostok.” Byulleten’ Sovetskoi Antarkticheskoi Ekspeditsii97, 135–148 (1978)Google Scholar
  25. ESPR-Environ. Sci. & Pollut. Res.1 (3) 1994 171Google Scholar
  26. Kotlyakov, V. M.: O priznakakh sezonnykh otlozhenii snega v centralnykh reionakh Antarktidy. Byulleten’ Sovetskoi Antarkticheskoi Ekspeditsii26, 15–17(1961)Google Scholar
  27. Laj, P.;S. M. Drummey;M. J. Spencer;J. M. Palais;H. Sigurdsson: Depletion of H2O2 in Greenland ice core: implications for oxidation of volcanic SO2. Nature346, 45–48 (1990)CrossRefGoogle Scholar
  28. Leuenberger, M.;U. Siegenthaler: Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core. Nature 360, 449–451 (1992)CrossRefGoogle Scholar
  29. Leuenberger, M.;U. Siegenthaler;C. C. Langway: Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357, 488–490 (1992)CrossRefGoogle Scholar
  30. Loosli, H. H.: A dating method with39Ar. Earth Planet. Sci. Lett.63, 51–62 (1983)CrossRefGoogle Scholar
  31. Loosli, H. H.;H. Oeschger: Use of39Ar and14C for groundwater dating. Radiocarbon22, 836–870 (1980)Google Scholar
  32. Lorius, C.;D. Raynaud;L. Dolle: Densite de la glace et etude des gaz en profondeur dans un glacier antarctique. Tellus20, 449–459 (1968)CrossRefGoogle Scholar
  33. Maeno, N.;D. Kuroiwa: Metamorphism of air bubbles in a snow crystal.” J. Glaciol.6, 561–564 (1967)Google Scholar
  34. Makogon, Y., F.: Gidraty Prorodnikh Gazov. Moscow, Negra 1974, p. 208Google Scholar
  35. Matsuo, S.;Y. Miyake: Gas composition in ice samples from antarctica. J. Geophys. Res.71, 5235–5241 (1966)Google Scholar
  36. Miller, S. L.: The clathrate hydrates — their nature and occurrence. In:E. Whally &S.J. Jones: Physics and Chemistry of Ice. Ottawa, University of Toronto Press 1973, pp. 42–50Google Scholar
  37. Mulvaney, R.;E. W. Wolff;K. Oates: Sulfuric acid at grain boundaries in Antarctic ice. Nature331, 247–249 (1988)CrossRefGoogle Scholar
  38. Nakahara, J.;Y. Shigesato;A. Higashi;T. Hondoh;C. C. Langway JR.: Raman spectra of natural dathrates in deep ice cores.” 57, 421–430 (1988)Google Scholar
  39. Narita, S.;O. Watanabe: Photographs of vertical section of firn. JARE Data Reports No. 36 (Glaciology), National Institute of Polar Research, Tokyo 1977, pp. 126–138Google Scholar
  40. Neftel, A.: Use of snow and firn analysis to reconstruct past atmospheric composition,in:D.T. Davies;M. Tranter;H. Jones: Seasonal Snowpacks — Processes of Compositional Change. Berlin, Springer-Verlag 1991, pp. 386–415Google Scholar
  41. Neftel, A.;P. Jacob;D. Klockow: Long-term record of H2O2 in polar ice cores. Tellus38B, 262–270 (1986)Google Scholar
  42. Neftel, A.;E. Moor;H. Oeschger;B. Stauffer: Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature315, 45–47 (1985)CrossRefGoogle Scholar
  43. Neftel, A.;H. Oeschger;J. Schwander;B. Stauffer: Carbon dioxide concentration in bubbles of natural cold ice. J. Phys. Chem.87, 4116–4120 (1983)CrossRefGoogle Scholar
  44. Neftel, A.;H. Oeschger;J. Schwander;B. Stauffer;R. Zumbrunn: Ice core sample measurements give atmospheric CO2 content during the past 40,000 years. Nature 295, 220–223 (1982)CrossRefGoogle Scholar
  45. Neftel, A.;H. Oeschger;T. Staffelbach;B. Stauffer: CO2 record in the Byrd ice core 50,000 – 5,000 years BP. Nature331, 609–611 (1988)CrossRefGoogle Scholar
  46. Nutt, D. C.: Recent studies of gases in glacier ice. Polar Notes1, 57–66 (1959)Google Scholar
  47. Oeschger, H.: Variations in composition of the atmosphere (summary). Hva skjer med klimaet i polaromradene? Sammendrag av foredrag på symposium 25–26 april 1989. Norsk Polarinstitutt, Oslo, Rapportserie No. 53, 1–2 (1989)Google Scholar
  48. Oeschger, H.; B. Stauffer; P. Bucher; H. H. Loosli: Extraction of gases and dissolved and paniculate matter from ice in deep boreholes. Isotopes and Impurities in Snow and Ice. IAHS Publication No.118, 307–311 (1975)Google Scholar
  49. Oeschger, H.;B. Stauffer;R. Finkel;C. C. Langway JR.: Variations of the CO2 concentration of occluded air and of anions and dust in polar ice cores,in:E. T. Sundquist;W. S. Broecker: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington, D.C., American Geophysical Union. 1985, pp. 132–142Google Scholar
  50. Pearman, G. I.;D. Etheridge;F. De Silva;P. J. Fraser: Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in antarctic ice. Nature320, 248–250 (1986)CrossRefGoogle Scholar
  51. Pearman, G. I.;P. J. Fraser: Sources of increased methane. Nature332: 489–490 (1988)CrossRefGoogle Scholar
  52. Post, W. M.;T.-H. Peng;W. R. Emanuel;A. W. King;V. H. Dale;D. L. Deangelis: The Global Carbon Cycle. American Scientist78, 310–326 (1990)Google Scholar
  53. Raynaud, D.;J. M. Barnola: An Antarctic ice core reveals atmospheric CO2 variations over the past few centuries. Nature315, 309–311 (1985)CrossRefGoogle Scholar
  54. Raynaud, D., R. Delmas: Composition des gas contenus dans la glace polaire. Isotopes and Impurities in Snow and Ice. IAHS Publication No.118, 377–381 (1977)Google Scholar
  55. Raynaud, D.;J. Jouzel;J. M. Barnola;J. Chappellaz;R. J. Delmas;C. Lorius: The ice record of greenhouse gases. Science259, 926–934 (1993)Google Scholar
  56. Repp, K.: Snow accumulation and snow stratigraphy on Riiset-Larsenisen, Dronning Maud Land, Antarctica. Norsk Polarinstitutt Skrifter169, 81–92 (1978)Google Scholar
  57. Satow, K.;O. Watanabe: Net accumulation and oxygen isotope composition of snow on Mizuho Plateau, Antarctica. Ann. Glaciol.6, 300–302 (1985)Google Scholar
  58. Schwander, J.: The transformation of snow to ice and the occlusion of gases,in:H. Oeschger &C.C. Langway Jr.: The Environmental Record in Glaciers and Ice Sheets. Chichester, John Wiley & Sons Ltd. 1989, pp. 53–67Google Scholar
  59. Schwander, J.;J. M. Barnola;C. Andrie;M. Leuenberger;A. Ludin;D. Raynaud;B. Stauffer: The age of the air in the firn and the ice at Summit, Greenland. J. Geophys. Res.98(D2), 2831–2838 (1993)CrossRefGoogle Scholar
  60. Schwander, J.;B. Stauffer: Age difference between polar ice and the air trapped in its bubbles. Nature311, 45–47 (1984)CrossRefGoogle Scholar
  61. Siegenthaler, U.;H. Friedli;H. Loetscher;E. Moor;A. Neftel;H. Oeschger;B. Stauffer: Stable-isotope ratios and concentration of CO2 in air from polar ice cores. Ann. Glaciol.10, 151–156 (1988)Google Scholar
  62. Siegenthaler, U.;H. Oeschger: Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus39B, 140–154 (1987)CrossRefGoogle Scholar
  63. Sigg, A.;A. Neftel: Evidence for a 50 % increase in H2O2 over the past 200 years from Greenland ice core. Nature351, 557–559 (1991)CrossRefGoogle Scholar
  64. Sowers, T. A.;M. L. Bender;D. Raynaud;C. Lorius: Elemental and isotopic composition of O2 and N2 gases in ice cores (Abstract). Ann. Glaciol.10, 218 (1988)Google Scholar
  65. Staffelbach, T.;A. Neftel;B. Stauffer;D. Jacob: A record of the atmospheric methane sink from formaldehyde in polar ice cores. Nature349, 603 (1991)CrossRefGoogle Scholar
  66. Stauffer, B.;W. Berner: CO2 in natural ice. J. Glaciol.21(85), 291–300 (1978)Google Scholar
  67. Stauffer, B.;W. Berner;H. Oeschger;J. Schwander: Atmospheric CO2 history from ice core studies. Ztschr. f. Gletscherkunde u. Glazialgeol.17, 1–15 (1981)Google Scholar
  68. Stauffer, B.;G. Fischer;A. Neftel;H. Oeschger: Increase of atmospheric methane recorded in Antarctic ice core. Science229, 1386–1388 (1985 a)CrossRefGoogle Scholar
  69. Stauffer, B.;H. Hofer;H. Oeschger;J. Schwander;U. Siegenthaler: Atmospheric CO2 concentration during the last glaciation. Ann. Glaciol.5, 160–164 (1984)Google Scholar
  70. Stauffer, B.; A. Neftel; H. Oeschger; J. Schwander: CO2 concentration in air extracted from Greenland ice samples. Geophys. Monogr. No.33, 85–89 (1985)Google Scholar
  71. Takenouchi, S.;G. C. Kennedy: Dissociation pressures of the phase CO2 53/4 H2O. J. Geol.73, 383–390 (1965)Google Scholar
  72. Wahlen, M.;D. Allen;B. Deck;A. Herchenroder: Initial measurements of CO2 concentrations (1530 to 1940 AD) in air occluded in the GISP 2 ice core from Central Greenland. Geophys. Res. Lett.18, 1457–1460 (1991)CrossRefGoogle Scholar
  73. Watanabe, O.: Stratigraphic observations of surface snow cover. JARE Data Reports No. 36 (Glaciology), National Institute of Polar Research, Tokyo 1977, pp. 61–138Google Scholar
  74. Watanabe, O.: Stratigraphic studies of the snow cores in Mizuho Plateau. Mem. Nation. Inst. Polar Res. (Tokyo), Special Issue7, 154–181 (1978)Google Scholar
  75. Watanabe, O.;K. Kato;K. Satow;F. Okuhira: Stratigraphic analyses of firn and ice at Mizuho Station. Mem. Nation. Inst. Polar Res. (Tokyo), Special Issue10, 25–47 (1978)Google Scholar
  76. Wolff, E. W.;R. Mulvaney;K. Oates: The location of impurities in Antarctic ice. Ann. Glaciol.11, 194–197 (1988)Google Scholar
  77. Zardini, D.;D. Raynaud;D. Schaffer;W. Seiler: N2O measurements of air extracted from antarctic ice cores: implication on atmospheric N2O back to the last glacial-interglacial transition. J. Atmos. Chem.8, 189–201 (1989)CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 1994

Authors and Affiliations

  • Zbigniew Jaworowski
    • 1
  1. 1.Institute for Energy Technology (Institutt for Energiteknikk)KjellerNorway

Personalised recommendations