The Mathematical Intelligencer

, Volume 28, Issue 3, pp 4–5 | Cite as

An elementary proof of the Gregory-Mengoli-Mercator formula

Department Note
  • 83 Downloads

Refferences

  1. [A]
    Niels Henrik Abel, Recherches sur la serie\(1 + \frac{m}{1}X + \frac{{m(m + 1)}}{{1 \cdot 2}}X^2 + \frac{{m(m + 1)(m + 2)}}{{1 \cdot 2 \cdot 3}}X^3 + \ldots \), CreteJournal 1, 311–339, 1827. Reprinted in L. Sylow & S. Lie (eds),Oeuvres complètes de N. H. Abel, Tome 1, 219-250, Grondell & Son, 1881.Google Scholar
  2. [C]
    Richard Courant,Vorlesungen über Differential- und Integralrechnung. Erster Band. Springer 1955Google Scholar
  3. [G]
    James Gregory,Vera Circuli et Hyperbolae Quadratura, in Propria Sua Proportionis Specie, Inventa & Demonstrata, Padua, 1667.Google Scholar
  4. [H]
    Stefan Hildebrandt,Analysis 1, Springer, 2002Google Scholar
  5. [K]
    Max Koecher,Klassiche elementare Analysis, Birkhäuser, 1987.Google Scholar
  6. [Men]
    Pietro Mengoli,Novae quadraturae arithmeticae, seu de additione fractionum. Bologna 1650.Google Scholar
  7. [Mer]
    Nicolaus Mercator,Logarithmotechnia, 1668.Google Scholar
  8. [R]
    Walter Rudin,Principles of Mathematical Analysis, 2nd edition, McGraw-Hill, 1964Google Scholar

Copyright information

© Springer Science + Business Media Inc. 2006

Authors and Affiliations

  1. 1.Zentrum Mathematik Technische Universität MünchenGarching b. MünchenGermany
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations