Journal of Genetics

, Volume 49, Issue 2, pp 87–108 | Cite as

Methods for the study of histocompatibility genes

  • G. D. Snell


Inbred Strain Rheumatic Fever Recessive Allele Geometric Series Common Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aptekman, P. M., Lewis, M. R. &King, H. D. (1946). A method of producing in inbred albino rats a high percentage of immunity from tumors native in their strain.J. Immunol. 52, 77–85.Google Scholar
  2. Bailey, G. H. &Raffel, S. (1941). Organ specificity of tissues of the dog and man as shown by passive anaphylaxis in guinea-pigs.J. Exp. Med. 73, 617–28.CrossRefGoogle Scholar
  3. Bittner, J. J. (1931). A genetic study of the transplantation of tumors arising in hybrid mice.Amer. J. Cancer,15, 2202–47.Google Scholar
  4. Bittner, J. J. (1933a). Genetic studies on the transplantation of tumors. IV. Linkage in tumor 19308A.Amer. J. Cancer,17, 699–708.Google Scholar
  5. Bittner, J. J. (1933b). Genetic studies on the transplantation of tumors. VII. Comparative study of tumors 1930A, B and C.Amer. J. Cancer,17, 724–34.Google Scholar
  6. Bittner, J. J. (1935). A review of genetic studies on the transplantation of tumours.J. Genet. 31, 471–87.CrossRefGoogle Scholar
  7. Boorman, K. E. &Dodd, B. E. (1943). The group-specific substances,A, B, M, N andRh: their occurrence in tissues and body fluids.J. Path. Bact. 55, 329–39.CrossRefGoogle Scholar
  8. Cavelti, P. A. (1945). Autoantibodies in rheumatic fever.Proc. Soc. Exp. Biol., N. Y.,60, 379–81.Google Scholar
  9. Cloudman, A. M. (1932). A comparative study of transplantability of eight mammary gland tumors arising in inbred mice.Amer. J. Cancer,16, 568–630.Google Scholar
  10. Fisher, R. A. &Race, R. R. (1946).Rh gene frequencies in Britain.Nature, Lond.,157, 48–9.CrossRefGoogle Scholar
  11. Goldfeder, Anna (1945). Induced resistance in inbred homozygous rats to a lymphosarcoma autogenous to the strain.Proc. Soc. Exp. Biol., N. Y.,59, 104–9.Google Scholar
  12. Gorer, P. A. (1937). The genetic and antigenic basis of tumour transplantation.J. Path. Bact. 44, 691–7.CrossRefGoogle Scholar
  13. Gorer, P. A. (1942). The role of antibodies in immunity to transplanted leukaemia in mice.J. Path. Bact. 54, 51–65.CrossRefGoogle Scholar
  14. Gross, L. (1943). Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line.Cancer Res 3, 326–33.Google Scholar
  15. Haldane, J. B. S. (1936). The amount of heterozygosis to be expected in an approximately pure line.J. Genet. 32, 375–91.CrossRefGoogle Scholar
  16. Irwin, M. R. (1945). Antigens, antibodies and genes.Biol. Rev. 21, 93–100.CrossRefGoogle Scholar
  17. Kidd, J. G. (1946a). Suppression of growth of Brown-Pearce tumor cells by a specific antibody. With a consideration of the nature of the reacting cell constituent.J. Exp. Med. 83, 227–50.CrossRefGoogle Scholar
  18. Kidd, J. G. (1946b). Distinctive constituents of tumor cells and their possible relations to the phenomena of autonomy, anaplasia, and tumor causation.Cold Spr. Harb. Symp. Quant Biol. 11, 94–112.Google Scholar
  19. Kidd, J. G. &Friedewald, W. F. (1942). A natural antibody that reactsin vitro with a sedimentable constituent of normal tissue cells. II. Specificity of the phenomenon: general discussion.J. Exp. Med. 76, 557–78.CrossRefGoogle Scholar
  20. Law, L. W. (1942). Foster nursing and the growth of transplantable leukemias in mice.Cancer Res. 2, 108–15.Google Scholar
  21. Little, C. C. (1941).The Biology of the Laboratory Mouse, Chap. 7. Philadelphia: The Blakiston Co.Google Scholar
  22. Little, C. C. &Strong, L. C. (1924). Genetic studies on the transplantation of two adenocarcinomata.J. Exp. Zoöl. 41, 93–114.CrossRefGoogle Scholar
  23. Little, C. C. &Tyzzer, E. E. (1916). Further studies on inheritance of susceptibility to a transplantable tumor of Japanese waltzing mice.J. Med. Res. 33, 393–425.Google Scholar
  24. MacDowell, E. C., Potter, J. S. &Taylor, M. J. (1939). The influence of transplantation upon immunological properties of leukemic cells.Proc. Nat. Acad. Sci., Wash.,25, 416–20.CrossRefGoogle Scholar
  25. MacDowell, E. C. &Richter, M. N. (1932). Studies on mouse leukemia. V. A. genetic analysis of susceptibility to inoculated leukemia of line I.Biol. Zbl. 52, 266–79.Google Scholar
  26. MacDowell, E. C., Taylor, M. J. &Potter, J. S. (1934). Immunization of mice naturally susceptible to a transplantable leukemia.Proc. Soc. Exp. Biol., N. Y.,32, 84–6.Google Scholar
  27. Metalnikoff, S. (1900). Études, sur la spermatoxine.Ann. Inst. Pasteur,14, 577–89.Google Scholar
  28. Snell, G. D., Cloudman, A. M., Failor, E. &Douglass, P. (1946). Inhibition and stimulation of tumor homoiotransplants by prior injections of lyophilized, tumor tissue.J. Nat. Cancer Inst. 6, 303–16.Google Scholar
  29. Spencer, R. R. (1942). Tumor immunity.J. Nat. Cancer Inst. 2, 317–32.Google Scholar
  30. Strandskov, H. H. (1944). Physiological aspects of human genetics, five human blood characteristics.Phys. Rev. 24, 445–66.Google Scholar
  31. Strong, L. C. (1926). Changes in the reaction potential of a transplantable tumor.J. Exp. Med. 43, 713–24.CrossRefGoogle Scholar
  32. Wiener, A. S. (1945). Theory and nomenclature of theHr blood factors.Science,102, 479–82.CrossRefPubMedGoogle Scholar
  33. Woglom, W. H. (1929). Immunity to transplantable tumours.Cancer Res. 4, 129–214.Google Scholar
  34. Wright, S. (1945). Physiological aspects of genetics.Ann. Rev. Physiol. 7, 75–106.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1948

Authors and Affiliations

  • G. D. Snell
    • 1
  1. 1.Roscoe B. Jackson Memorial LaboratoryBar Harbour

Personalised recommendations