Journal of Soils and Sediments

, Volume 1, Issue 1, pp 30–36 | Cite as

Managing Contaminated Sediments

Review Articles


Management of contaminated sediments, i.e. linking risk assessment and problem solutions, needs both quality criteria respecting recent findings on the bioavailability of pollutants and in-depth knowledge on processes controlling their particular hydrological and biogeochemical dynamics.

To understand bioavailability is the key issue for managing contaminated sediments. Therefore, scrutiny of the geochemical situation, toxicity, and biodegradability is needed. The first part of this review refers to the new insights into ‘diagenetic’ mechanisms on particles including ageing and their effects on biological interactions.

Chemical and physical methods are described to quantify the retarded desorption behaviour of hydrophobic organic substances and toxic metals. Results of analyses on the extractability of particle-bound pollutants (e.g. solid phase micro-extraction) can be correlated with the bioavailability. Some techniques recently developed to mimic bioavailabilty are briefly summarised. As can be derived from this review, there is a clear need to refine bioavailability models including equilibrium partitioning.

A set of bioassays is a powerful supplement to assess sediment quality. Consequently, a paradigm shift should be initiated for the evaluation of biological data. All information of a survey have to be implemented in an assessment scheme. Multivariate statistics and fuzzy mathematics provide promising means to interpret multiple data pattern.


Acid volatile sulfide (AVS) ageing bioavailability contaminated sediments equilibrium partitioning irreversible adsorption management of contaminated sediments porewater review articles sediment toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlf W, Gratzer H (1999): Erarbeitung von Kriterien zur Ableitung von Qualitätszielen für Sedimente und Schwebstoffe. Texte aus dem Umweltbundesamt41/99 Forschungsbericht 294 24 384/02. UFA-FB 98–119, 168 ppGoogle Scholar
  2. Ahlf W, Wild-Metzko S (1992): Bioassay responses to sediment elutriates and multivariate data analysis for hazard assessment of sediment-bound chemicals. Hydrobiologia235/236: 415–418CrossRefGoogle Scholar
  3. Alexander M (2000): Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol34: 4259–4265CrossRefGoogle Scholar
  4. Ankley GT, DiToro DM, Hansen DJ, Berry WJ (1996): Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem15: 2056–2066CrossRefGoogle Scholar
  5. Apitz SE (1998): Streamlining contaminated sediment management: the use of advanced sediment characterization - preliminary results. Wat Sci Tech37: 435–442CrossRefGoogle Scholar
  6. Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme LH (2000): Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals toVibrio fischeri. Environ Toxicol Chem19: 2348–2356CrossRefGoogle Scholar
  7. Bombardier M, Bermingham N (1999): The SED-TOX index: Tox- icity-directed management tool to assess and rank sediments based on their hazard-concept and application. Environ Toxicol Chem18: 685–698CrossRefGoogle Scholar
  8. Bosma TNF, Middeldorf PJM, Schraa G, Zehnder AJB (1997): Mass transfer limitations of biotransformation: Quantifying bioavailability. Environ Sci Technol31: 248–252CrossRefGoogle Scholar
  9. Brüggemann R, Kaune A, Zelles K, Hartmann A (1995): Einsatz der Hasse-Diagrammtechnik zur vergleichenden Datenanalyse von Biomarkerantworten und ökotoxikologischen Tests. UWSF - Z Umweltchem Ökotox7 (5) 265–274Google Scholar
  10. Brüggemann R, Steinberg GEW (1995): Einsatz der Hasse-Diagrammtechnik zur vergleichenden Bewertung von aquatischen Wirkungstests. UWSF - Z Umweltchem Ökotox7 (6) 323–331Google Scholar
  11. Brüggemann R, Kaune A, Klein J, Zellner R (1996): Anwendung der Hasse-Diagrammtechnik zur vergleichenden Bewertung von Umweltveränderungen. UWSF - Z Umweltchem Ökotox8 (2) 89–96CrossRefGoogle Scholar
  12. Brüggemann R, Oberemm A, Steinberg C (1997): Ranking of aquatic effect tests using Hasse diagrams. Toxicol Environ Chem63: 125–139CrossRefGoogle Scholar
  13. Burton Jr G A, MacPherson C (1995): Sediment toxicity testing — Issues and methods. In: Hoffmann DJ, Rattner BA, Burton Jr GA, Cairns Jr J, Eds, Handbook of Ecotoxicology, pp 70–103. CRC Press, Boca Raton, FLGoogle Scholar
  14. Chapman PM, Wang F (2001): Assessing sediment contamination in estuaries. Environ Toxicol Chem20: 3–22CrossRefGoogle Scholar
  15. Chapman PM (1999): Risk assessment and the precautionary principle: a time and a place. Mar Pollut Bull38: 944–947CrossRefGoogle Scholar
  16. Chapman PM (1995): Sediment quality assessment: status and outlook. J Aquatic Ecosystem Health4: 183–194CrossRefGoogle Scholar
  17. Chapman PM, Anderson B, Carr S, Engle V, Green R, Hameedi J, Harmon M, Haverland P, Hyland J, Ingersoll C (1997): General Guidelines for using the Sediment Quality Triad. Mar Pollut Bull34: 368–372CrossRefGoogle Scholar
  18. Chen W, Kan AT, Tomson MB (2000): Irreverible adsorption of chlorinated benzenes to natural sediments: Implications for sediment quality criteria. Environ Sci Technol34: 385–392CrossRefGoogle Scholar
  19. Chung N, Alexander M (1998): Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ Sci Technol32: 855–860CrossRefGoogle Scholar
  20. Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown N, Lloyd J, Hobman J, Csöregi E, Johannsson G, Mattiasson B (1999): Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta387: 235–244CrossRefGoogle Scholar
  21. Cornelissen G, Van Noort PCM, Govers HAJ (1998): Mechanism of slow desorption of organic compounds from sediments: a study using model sorbents. Environ Sci Technol32: 3124–3131CrossRefGoogle Scholar
  22. DiToro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson, AR, Ankley GT (1992): Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol26: 96–101CrossRefGoogle Scholar
  23. EPA (1997): The incidence and severity of sediment contamination in surface waters of the United States, Vol 1; EPA 823-R-97-006. US Environmental Protection Agency, Washington DCGoogle Scholar
  24. Farrell J, Reinhard M (1994): Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 1. Isotherms. Environ Sci Technol28: 53–62CrossRefGoogle Scholar
  25. Fay AA, Brownawell BJ, Elskus AA, McElroy AE (2000): Critical body residues in the marine amphipodAmpelisca abdita: sediment exposures with nonionic organic contaminants. Environ Toxicol Chem19: 1028–1035CrossRefGoogle Scholar
  26. Ferdinandy-van Vierken MMA (1998): Changes for biological techniques in sediment remediation. Wat Sci Tech37: 345–353Google Scholar
  27. Förstner U (1987): Changes in metal mobilities in aquatic and terrestrial cycles. In: Patterson JW, Passino R, Eds, Metal Speciation, Separation and Recovery. pp 3–26, Lewis Publ., Chelsea, MIGoogle Scholar
  28. Förstner U, Schoer J (1984): Diagenesis of chemical associations of Cs-137 and other artificial radionuclides in river sediments. Environ Technol Lett5: 295–306Google Scholar
  29. Gandrass J, Salomons W (2001): Project report ‘Dredged Material in the Port of Rotterdam - Interface between Rhine Catchment Area and North Sea’. GKSS Research Centre, Geesthacht, Germany, 28.2.2001Google Scholar
  30. Gerth J, Brümmer GW, Tiller KG (1993): Retention of Ni, Zn and Cd by Siassociated goethite. Z Pflanzenernähr Bodenk156: 123–129CrossRefGoogle Scholar
  31. Ghosh U, Gilette IS, Luthy RG, Zare RN (2000): Microscale location, characterisization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles. Environ Sci Technol34: 1729–1736CrossRefGoogle Scholar
  32. Giesy JP, Hoke RA (1989): Freshwater sediment toxicity bioassessment: rationale for species selection and test design. J Great Lakes Res15: 539–569CrossRefGoogle Scholar
  33. Giesy JP, Graney RL, Newsted JL, Rosiu CJ, Benda A, Kreis RG, Horvath FJ (1988): Comparison of three sediment bioassay methods using Detroit River sediments. Environ Toxicol Chem7: 483–498CrossRefGoogle Scholar
  34. Gray JS, Bakke T, Beck HJ, Nilssen I (1999): Managing the environmental effects of the Norwegian oil and gas industry: from conflict to consensus. Mar Pollut Bull38: 525–530CrossRefGoogle Scholar
  35. Griscom SB, Fisher NS, Luoma SN (2000): Geochemical influences on assimilation of sediment-bound metals in clams and mussels. Environ Sci Technol34, 91–99CrossRefGoogle Scholar
  36. Gustafsson O, Haghseta F, Chan C, MacFarlane J, Gschwend PM (1997): Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environ Sci Technol31: 203–209CrossRefGoogle Scholar
  37. Hatzinger PB, Alexander M (1995): Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol29: 537–545CrossRefGoogle Scholar
  38. Heise S, Maaß V, Gratzer H, Ahlf W (2000): Ecotoxicological sediment classification: capabilities and potentials - presented for Elbe River sediments. In: Sedimentbewertung in europäischen Flussgebieten - Sediment Assessment in European River Basins. BFG-Mitteilungen22: 96–104Google Scholar
  39. Heron G, Christensen TH (1995): Impact of sediment-bound iron on redox buffering in a landfill leachate polluted aquifer (Vejen, Denmark). Environ Sci Technol29: 187–192CrossRefGoogle Scholar
  40. Huang W, Weber WJ jr (1997): A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ Sci Technol31: 2562–2569Google Scholar
  41. Huang W, Weber WJ jr (1998): A distributed reactivity model for sorption by soils and sediments. 11. Slow concentration-dependent sorption rates.32: 3549–3555Google Scholar
  42. Jonker MTO, Smedes F (2000): Preferential sorption of planar contaminants in sediments from Lake Ketelmeer, The Netherlands. Environ Sci Technol34: 1620–1626CrossRefGoogle Scholar
  43. Keddy CJ, Greene JC, Bonnell MA (1995): Review of whole-organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicol Environ Saf30: 221–251CrossRefGoogle Scholar
  44. Kelsey JW, Kottler BD, Alexander M (1997): Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol31: 214–217CrossRefGoogle Scholar
  45. Kersten M, Förstner U (1991): Geochemical characterization of the potential trace metal mobility in cohesive sediment. Geo-Marine Letts11: 184–187CrossRefGoogle Scholar
  46. Kosian PA, West CW, Pasha MS, Cox JS, Mount DR, Huggett RJ, Ankley GT (1999): Use of nonpolar resin for reduction of fluoranthene bioavailability in sediment. Environ Toxicol Chem18: 201–206CrossRefGoogle Scholar
  47. Krantzberg G, Hartig JH, Zarull MA (2000): Sediment management: deciding when to intervene. Environ Sci Technol34: 22A-27ACrossRefGoogle Scholar
  48. Lebo JA, Huckins JN, Petty JD, Ho KT (2001): Removal of contaminant toxicity from sediments -Early work toward development of a toxicity identification evaluation (TIE) method. Chemosphere39: 389–406CrossRefGoogle Scholar
  49. Lion LW, Altman RS, Leckie JO (1982): Trace metal adsorption characteristics of estuarine particulate matter: Evaluation of contribution of Fe/Mn oxide and organic surface coatings. Environ Sci Technol16: 660–666CrossRefGoogle Scholar
  50. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ jr, Westall JC (1997): Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol31: 3341–3347CrossRefGoogle Scholar
  51. Mayer P, Vaes WHJ, Wijnker F, Legierse KCHM, Kraaij R, Tolls J, Hermens JLM (2000): Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol34: 5177–5183CrossRefGoogle Scholar
  52. Matrubutham U, Thonnard JE, Sayler GS (1997): Bioluminescence induction response and survival of the bioreporter bacteriumPseudomonas fluorscens HK44 in nutrient-derived conditions. Appl Microbiol Biotech47: 604–609CrossRefGoogle Scholar
  53. Neumann-Hensel H, Ricking M, Hollert H, Ahlf W (2000): Empfehlung zur Bewertung von Sedimentbelastungen Bodenschutz4: 111–117Google Scholar
  54. Nam K, Alexander M (1998): Role of nanoporosity and hydrophobicity in sequestration and bioavailability: Tests with model solids. Environ Sci Technol32: 71–74CrossRefGoogle Scholar
  55. O’Connor TP, Paul JF (2000): Misfit between sediment toxicity and chemistry. Mar Pollut Bull40: 59–64CrossRefGoogle Scholar
  56. Pignatello JJ, Xing B (1996): Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol30: 1–11CrossRefGoogle Scholar
  57. Reid BJ, Jones KC, Semple KT (2000): Bioavailability of persistent organic pollutants in soils and sediments - a perspective on mechanisms, consequences and assessment. Environ Pollut108: 103–112CrossRefGoogle Scholar
  58. Reid BJ, Paton GI, Bundy JG, Jones KC, Semple KT (2000): Determination of soil-associated organic contaminant bioavailability using a novel extraction procedure in conjunction withlux-marked microbiai biosensors. In: Contaminated Soil 2000, Vol 2, pp 870–871, Thomas Telford, LondonGoogle Scholar
  59. Roberts DR, Scheidegger AM, Sparks DL (1999): Kinetics of mixed Ni-Al precipitate formation on a soil clay fraction. Environ Sci Technol33: 3749–3754CrossRefGoogle Scholar
  60. Salomons W (1980): Adsorption processes and hydrodynamic conditions in estuaries. Environ Technol Lett1: 356–365CrossRefGoogle Scholar
  61. Swartz RC (1999) Consensus sediment quality guidelines for polycyclic aromatic aromatic hydrocarbon mixtures. Environ Toxicol Chem18: 780–787CrossRefGoogle Scholar
  62. Swartz RC, Schults DW, Ozretich RJ, Lambertson JO, Cole FA, DeWitt TH, Redmond MS, Ferraro SP (1995): PAH: A model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected samples. Environ Sci Technol14: 1977–1988Google Scholar
  63. Tang J, Robertson BK, Alexander M (1999): Chemical-extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil. Environ Sci Technol33: 4346–4351CrossRefGoogle Scholar
  64. Thompson HA, Parks GA, Brown GE jr (1999): Dynamic interaction of dissolution, surface adsorption and precipitation in an aging cobalt(II)-clay-water system. Geochim Cosmochim Acta63: 1767–1779CrossRefGoogle Scholar
  65. Urrestarazu Ramos E, Meijer SN, Vaes WHJ, Verhaar HJM, Hermens JLM (1998): Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environ Sci Technol32: 3430–3435CrossRefGoogle Scholar
  66. Vangronsveld J, Spelmans N, Clijsters H, Adriaensens R, Carleer R, Van Poucke D, van der Lelie D, Mergeay M, Corbisier P, Bierkens J, Diels L (2000): Physico-chemical and biological evaluation of the efficacy ofin situ metal inactivation in contaminated soils. In: Contaminated Soil 2000. Vol 2, pp 1155–1156, Thomas Telford, LondonGoogle Scholar
  67. Verbruggen EMJ, Vaes WHJ, Parkerton TF, Hermens JLM (2000): Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity. Environ Sci Technol34: 324–331CrossRefGoogle Scholar
  68. Weber WJ, Huang W (1996): A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environ Sci Technol30: 881–888CrossRefGoogle Scholar
  69. Weston DP, Mayer LM (1998): Comparison of in vitro digestive fluid extraction and traditional in vivo approaches as measures of polycyclic aromatic hydrocarbon bioavailability from sediments. Environ Toxicol Chem17: 830–840CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 2001

Authors and Affiliations

  1. 1.Department of Environmental Science and TechnologyUniversity of Technology Hamburg-Harburg, TU Hamburg-Harburg, Arbeitsbereich UmweltschutztechnikEissendorferstr. 40HamburgGermany

Personalised recommendations