Phosphine by bio-corrosion of phosphide-rich iron

  • Dietmar Glindemann
  • Frank Eismann
  • Armin Bergmann
  • Peter Kuschk
  • Ulrich Stottmeister
Research Articles

Abstract

Phosphine is a toxic agent and part of the phosphorus cycle. A hitherto unknown formation mechanism for phosphine in the environment was investigated. When iron samples containing iron phosphide were incubated in corrosive aquatic media affected by microbial metabolites, phosphine was liberated and measured by gas chromatography. Iron liberates phosphine especially in anoxic aquatic media under the influence of sulfide and an acidic pH. A phosphine-forming mechanism is suggested: Phosphate, an impurity of iron containing minerals, is reduced abioticly to iron phosphide. When iron is exposed to the environment (e.g. as outdoor equipment, scrap, contamination in iron milled food or as iron meteorites) and corrodes, the iron phosphide present in the iron is suspended in the medium and can hydrolyze to phosphine. Phosphine can accumulate to measurable quantities in anoxic microbial media, accelerating corrosion and preserving the phosphine formed from oxidation.

Keywords

Abiotic corrosion of iron anaerobic media anoxic corrosion of iron bio-corrosion biogas corrosion of phosphide-rich iron corrosive aquatic media environment, phosphine formation Desulfovibrio desulfuricans fermentation food fumigation intestinal tract iron iron-phosphide landfills manure microbial phosphate reduction microorganisms phosphine formation phosphorus cycle in the environment sediments sewage sludge soils sulfide 

References

  1. [1]
    Gmelin Handbook of Inorganic and Organometallic Chemistry: Phosphorus. Suppl.Vol.C1. Berlin: Springer 1993Google Scholar
  2. [2]
    World Health Organization: Phosphine and selected metal phosphides. Environmental Health Criteria 73. Geneva 1988Google Scholar
  3. [3]
    Devai, I.;Felföldy, L.;Witther, L.:Plósz, S.: Detection of phosphine: New aspects of the phosphorus cycle in the hydrosphere. Nature 333 (1988) 343–345CrossRefGoogle Scholar
  4. [4]
    Devai, I.;Delaune, R.D.: Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org.Geochem. 23 (1995) 277–279CrossRefGoogle Scholar
  5. [5]
    Gassmann, G.;Glindemann, D.: Phosphine in the Biosphere: Angew. Chem.Intern.Edit. 32 (1993) 761–763CrossRefGoogle Scholar
  6. [6]
    Glindemann, D.;Stottmeister, U.;Bergmann, A.: Free phosphine from the anaerobic biosphere. Environ.Sci. & Pollut.Res. 3 (1996) 17–19CrossRefGoogle Scholar
  7. [7]
    Eismann, F.;Glindemann, D.;Bergmann, A.;Kuschk P.: Soils as a source and sink of phosphine. Chemosphere 35 (1997) 523–533CrossRefGoogle Scholar
  8. [8]
    Glindemann, D.;Bergmann, A.;Stottmeister, U.;Gassmann, G.: (1996) Phosphine in the lower terrestrial troposphere. Naturwissenschaften 83 (1996) 131–133CrossRefGoogle Scholar
  9. [9]
    Gassmann, G.;Glindemann, D..;van Beusekom, J.: Offshore Atmospheric Phosphine. Naturwissenschaften 83 (1996) 129–131CrossRefGoogle Scholar
  10. [10]
    Nusch, E.A.;Poltz, J.;Burcksteeg, K.: “Eutrostop” - Eine Alternative zur Gewässersanierung? Korrespondenz Abwasser 34 (1987) 1083–1088Google Scholar
  11. [11]
    Wagner, R.: Theoretische Untersuchung der Möglichkeit einer mikrobiellen Phosphinbildung im aquatischen Milieu. Forschungsbericht 10204365, Umweltbundesamt Berlin, 1–14, 1989Google Scholar
  12. [12]
    Iverson, W.P.: Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans. Nature 217 (1968) 1265–1267CrossRefGoogle Scholar
  13. [13]
    Hamilton, W.A.: Sulphate-reducing bacteria and anaerobic corrosion. Ann.Rev.Microbiol. 39 (1985) 195–217CrossRefGoogle Scholar
  14. [14]
    Hoare, T.P.;Havenhand, D.J.: Factors influencing the rate of attack of mild steels by typical weak acid media. J.Iron Steel Inst. 133 (1936) 239–291Google Scholar
  15. [15]
    Tanaka, T.;Nakamura, Y.;Mizuike, A.;Ono, A.: Simultaneous Determination of Phosphorus, Sulfur and Arsenic in Steel by Hydride Generation and Gas Chromatography. Anal. Sci. 12 (1996) 77–80CrossRefGoogle Scholar
  16. [16]
    van Wazer, J.R.: Phosphorus and its Compounds. The phosphides. Vol. 1, pp 123–175. Interscience Publishers Inc., New York (1965)Google Scholar
  17. [17]
    Nowicki, T.W.: Gas-Liquid-Chromatographic and flame photometric detection of phosphine in wheat. Journal of Associational Analytical Chemists. 61 (1978) 829–836Google Scholar
  18. [18]
    Friel, J.J.;Goldstein, J.I.: An experimental study of phosphate reduction and phosphorus-bearing lunar metal particles. Geochim. Cosmochim. Acta, Suppl. (1976) 7 (Proc. Lunar Sci. Conf., 7th, Vol. 1), 791–806Google Scholar
  19. [19]
    Nishida, N.;Kimata, M.;Arakawa, Y.: Native Zinc, Copper, and Brass in the Red-Clouded Anorthite Megacryst as Probes of the Arc-Magmatic Process. Naturwissenschaften 81 (1994) 498–502CrossRefGoogle Scholar
  20. [20]
    Panduwawala, J.P.;Illeperuma, Chamara D.K.; Samarajeewa, U.: Iron contamination during commercial grinding of spices. J. Nad. Sci. Counc. Sri Lanka 16 (1988) 105–14Google Scholar
  21. [21]
    Hanselmann, K.W.: Microbially mediated processes in environmental chemistry. (Lake sediments as model systems). Chimia 40 (1986) 146–159Google Scholar

Copyright information

© Ecomed Publishers 1998

Authors and Affiliations

  • Dietmar Glindemann
    • 1
  • Frank Eismann
    • 1
  • Armin Bergmann
    • 1
  • Peter Kuschk
    • 2
  • Ulrich Stottmeister
    • 2
  1. 1.Institute of Animal Hygiene and Veterinary Public HealthUniv. of LeipzigLeipzigGermany
  2. 2.Centre for Environmental Research Leipzig-Halle Ltd.Leipzig

Personalised recommendations