Exposure to chlorinated acetic acids: Responses of peroxidase and glutathione S-transferase activity in pine needles

  • Peter Schröder
  • Soile Juuti
  • Sashwati Roy
  • Heinrich Sandermann
  • Sirkka Sutinen
IMTOX — Impact, Metabolism and Toxicity of Organic Xenobiotics


During long-term exposure of pine (Pinus sylvestris L.) seedlings to trichloro- and monochloroacetic acids via root uptake or acid mist treatments, both substances were removed from the plant tissues by metabolic activity. None of the treated plants exhibited visible stress symptoms at the concentrations used. In addition, the exposure to both substances led to dramatic changes in the activity of xenobiotic detoxification enzymes (peroxidase and gluthatione S-transferase) in the needles of the plants.


Gluthatione S-transferase activity impact, metabolism and toxicity of organic xenobiotics monochloroacetic acid peroxidase activity Pinus sylvestris trichloroacetic acid 


  1. Ashton, F.M.;A.S. Crafts (1973): Mode of action of herbicides. Wiley-Interscience Publ. Chichester, New YorkGoogle Scholar
  2. Bradford, M.M. (1976): A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem.72:248–254CrossRefGoogle Scholar
  3. Castillo, F.J. (1986): Extracellular peroxidases as markers of stress? In:Greppin, H., Penel, C. andGaspar, T. (Eds.) Molecules and physiological aspects of plant peroxidases. Centr. Botan. Genéve, 420–426Google Scholar
  4. Castillo, F.J.;P.R. Miller;H. Greppin (1987): Extracellular biochemical markers of photochemical oxidant air pollution damage to Norway spruce. Experientia43:111–115CrossRefGoogle Scholar
  5. Dean, J.V.;J.W. Gronwald;C.V. Eberlein (1990): Induction of glutathione S-transferase isoenzymes in sorghum by herbicide antidotes. Plant Physiol.92:467–473Google Scholar
  6. Debus, R.; B. Dittrich; J. Vollmer; P. Schröder (1989): Biomonitoring organischer Luftschadstoffe — Aufnahme und Wirkung in Pflanzen (Literaturstudie). Landsberg, München, Zürich, ecomed Verlagsgesellschaft AG & Co. KGGoogle Scholar
  7. Dekant, W.; S. Vamvakas; K. Bertold; S. Schmidt; D. Wild; D. Henschler (1986): Bacterial-Lyase mediated cleavage and mutagenicity of cysteine conjugates derived from the nephrocarcinogenic alkenes trichloroethylene, tetrachloroethylene and hexachlorobutadiene. Chem.-Biol. Int.: 31–45Google Scholar
  8. Figge, K. (1990): Luftgetragene, organische Schadstoffe in Blattorganen. UWSF — Z. Umweltchem. Ökotox.2(4): 200–207Google Scholar
  9. Fjellstedt, T.A.;R.H. Allen;B.K. Duncan;W.B. Jakoby (1973): Enzymatic conjugation of epoxides with glutathione. J. Biol. Chem.248 (10): 3702–3707Google Scholar
  10. Frank, H.;W. Frank (1985): Chlorophyll-bleaching by atmospheric pollutants and sunlight. Naturwiss.72:139–141CrossRefGoogle Scholar
  11. Frank, H.;A. Vincon;J. Reiss;H. Scholl (1990): Trichloroacetic acid in the foliage of forest trees. J. High Resol. Chromatogr.13:733–736CrossRefGoogle Scholar
  12. Frank, H.;H. Scholl;S. Sutinen;Y. Norokorpi (1992): Trichloroacetic acid in conifer needles in Finland. Ann. Bot. Fennici29:263–267Google Scholar
  13. Frank, H.;H. Scholl;D. Renschen;B. Rether;A. Laouedj;Y. Norokorpi (1994): Haloacetic acids, phytotoxic secondary air pollutants. ESPR — Environ. Sci. and Pollut. Res.1:4–11CrossRefGoogle Scholar
  14. Gürtel, R.;U. Möller;S. Sommer;H. Muller;K. Kleinermanns (1994): Photooxidation of exhaust pollutants. III. Photooxidation of chloroethenes: Degradation efficiencies, quantum yields and products. Chemosphere29:1671–1682CrossRefGoogle Scholar
  15. Habig, W.H.;M.J. Pabst;W.B. Jakoby (1974): Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J. Biol. Chem.249:7130–7139Google Scholar
  16. Hoekstra, E.J.; E.W.B. De Leer (1993): Natural production of chlorinated compounds in soil. In:Arendt, F., Annokkee, G.J., Bosman, R. and van den Brink, W.J. (Eds.) Contaminated soil’93. Kluwer Acad. Publ., pp. 215–224Google Scholar
  17. Hoekstra, E.J.;E.W.B. De Leer (1995): Organohalogens: the natural alternatives. Chem Brit31:127–131Google Scholar
  18. Hunaiti, A.A.;B.R. Ali (1990): Glutathione S-transferase from oxidiazon treated chickpea. Phytochemistry29:2431–2435CrossRefGoogle Scholar
  19. Itoh, N.;S. Kutsuna;T. Ibusuki (1994): A product study of the OH radical initated oxidation of perchloroethylene and trichloroethylene. Chemosphere11:2029–2040CrossRefGoogle Scholar
  20. Juun, S.;Y. Norokorpi;J. Ruuskanen (1995): Trichloroacetic acid (TCA) in pine needles caused by atmospheric emissions of kraft pulp mills. Chemosphere30:439–448CrossRefGoogle Scholar
  21. Juuti, S.;Y. Norokorpi;T. Helle;J. Ruuskanen (1996): Trichloroacetic acid in conifer needles and arboreal lichens in forest environments. Sci. Tot. Environ.180:117–124CrossRefGoogle Scholar
  22. Lamoureux, G.L.; D.S. Frear (1979): Pesticide metabolism in higher plants: in vitro enzyme studies. In:Paulson, D.G., Frear, D.S. and Marks, E.P. (Eds.) Xenobiotic metabolism: In vitro methods. ACS Symposium Series, Washington, D.C. pp. 77–128Google Scholar
  23. Lamoureux, G.L.;D.G. Rusness (1989): The role of glutathione and glutathione S-transferases in pesticide metabolism; selectivity and mode of action in plants and insects. In:Dolphin, D., Poulson, R., Avramovic, O. (Eds.) Glutathione: Chemical biochemical and medical aspects, Vol IIIB, Series: Enzyme and Cofactors. John Wiley and Sons, New York, pp 153–196Google Scholar
  24. Lamoureux, G.L.;D.G. Rusness (1993): Glutathione in the metabolism and detoxification of the xenobiotics in plants. In:De Kok, L.J., Stulen, I., Rennenberg, H., Brunold, C., Rauser, W. (Eds). Sulfur nutrition and assimilation in higher plants. SPB Academic Press, The HagueGoogle Scholar
  25. Levine, A.;R. Tenhaken;R. Dixon;C. Lamb (1994): H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell79: 583–593CrossRefGoogle Scholar
  26. Markkola, A.M.;R. Ohtonen;O. Tarvainen (1990): Peroxidase activity as an indicator of pollution stress in the fine roots of Pinus sylvestris. Water; Air; Soil Poll.52:149–156CrossRefGoogle Scholar
  27. Ostlund-Farrants, A.K.;D.J. Meyer;B. Coles;C. Southan;A. Aitken;P.J. Johnson;B. Ketterer (1989): The separation of glutathione S-transferase subunits by using reverse-phase highpressure liquid chromatography. Biochem. J.245: 423–428Google Scholar
  28. Pflugmacher, S.;P. Schröder (1994): Glutathione S-transferases in trees: Inducibility by various organic xenobiotics. Z. Pflanzenernährung und Bodenkunde158: 71–73CrossRefGoogle Scholar
  29. Ploemen, J.H.;A. Van Schanke;B. Van Ommen;P.J. Van Bladeren (1994): Reversible conjugation of ethacrynic acid with glutathione and human glutathione S-transferase P1-1. Cancer Res54: 915–919Google Scholar
  30. Plumacher, J.;P. Schröder (1994): Accumulation and fate of C1/ C2-chlorocarbons and trichloroacetic acid in spruce needles from an Austrian mountain site. Chemosphere29:2467–2476CrossRefGoogle Scholar
  31. Reimann, S.;K. Grob;H. Frank (1996): Chloroacetic acids in rain water. ES&T30: 2340–2344CrossRefGoogle Scholar
  32. Roy, S.;O. Häninen (1994): Pentachlorophenol: Uptake/elimination kinetics and metabolism in an aquatic plant,Eichhornia crassipes. Env. Toxicol. Chem.13(5): 736–773CrossRefGoogle Scholar
  33. Sandermann, H. (1992): Plant metabolism of xenobiotics. Trends Biochem. Sci.17:82–84CrossRefGoogle Scholar
  34. Sandermann, H. ( 1994): Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics4: 225–241CrossRefGoogle Scholar
  35. Schröder, P.;E.J. Belford (1996): Untersuchungen zur Aktivität von Glutathion S-Transferasen in Nadeln von Fichten im Schulterberg- und Christlumprofil. FBVA-Berichte94: 75–82Google Scholar
  36. Schröder, P.;C. Berkau (1993): Characterization of cytosolic glutathione S-transferase in spruce needles. Bot. Acta106:301–306Google Scholar
  37. Schröder, P.;R. Debus (1991): Responses of spruce trees (Picea abies L. Karst) to fumigation with Halon 1211 — first results of a pilot study. In: Plants for toxicity assessment.Gorsuch, J.W., Lower, W.R., Lewis, M.A., Wang, W. (Eds.) ASTM, Philadelphia, pp. 259–266Google Scholar
  38. Schröder, P.;C. Götzberger (1997): Partial purification and characterization of glutathione S-transferase isozymes from the leaves ofJuniperus communis, Larix decidua andTaxus baccata. Appl. Botany71: 31–37Google Scholar
  39. Schröder, P.;C. Götzberger;S. Pflugmacher (1994): On the presence and the isozyme pattern of glutathione S-transferase in leaves of aspen (Populus tremula L.) and beech (Fagus sylvatica L.) — results of a pilot study. Plant Physiol. (Life Sci. Adv.)13: 205–211Google Scholar
  40. Schröder, P.;S. Pflugmacher;H. Rennenberg (1992): Biomarker für organische Schadstoffe in Fichten: Dynamik des Entgiftungsenzyms Glutathion S-Transferase. Angew. Botanik66 (2/1): 174–179Google Scholar
  41. Schröder, P.;H. Rennenberg (1992) Characterization of glutathione S-transferase from dwarf pine needles (Pinus mugo TURR). Tree Physiol.11(2): 151–160Google Scholar
  42. Schröder, P.;D.G Rusness;G.L. Lamoureux;H. Rennenberg (1990): Glutathione-S-Transferase activity in spruce needles. Pestic. Biochem. Physiol.37: 211–218CrossRefGoogle Scholar
  43. Schröder, P.; A. Weiss (1991): Uptake and detoxification of chlorinated hydrocarbons by spruce trees. In:Schwartz, S.E. and Slinn, G.W.N. (Eds.) Precipitation Scavenging and Atmosphere Surface Exchange. Hemisphere Publ., 1011–1021Google Scholar
  44. Schröder, P.;A. Wolf (1996): Characterization of glutathione S-transferase from needles of spruce trees from a forest decline stand. Tree Physiol.16 (5): 503–508Google Scholar
  45. Sutinen, S.;S. Juun;L. Korvisto;M. Turunen;J. Ruuskanen (1995): The uptake of and structural changes induced by trichloroacetic acid in the needles of Scots pine seedlings. J. Exp. Bot.46:1223–1231CrossRefGoogle Scholar
  46. Sutinen, S.; S. Juun; A. Ryyppö (1997): Long term exposure of scots pine seedlings to monochloroacetic acid and trichloroacetic acid: Effects on the needles and growth. Ann. Bot. Fennici, acceptedGoogle Scholar
  47. Tuazon, E.C.;R. Atkinson;S.M. Aschmann;M.A. Goodman;A.M. Winer (1988): Atmospheric reactions of chloroethenes with the OH radical. Int. J. Chem. Kinet.20:241–265CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 1997

Authors and Affiliations

  • Peter Schröder
    • 1
  • Soile Juuti
    • 2
  • Sashwati Roy
    • 3
  • Heinrich Sandermann
    • 1
  • Sirkka Sutinen
    • 4
  1. 1.Neuherberg, Institut für Biochemische PflanzenpathologieGSF — Forschungszentrum für Umwelt und Gesundheit GmbHNeuherbergGermany
  2. 2.Department of Environmental SciencesUniversity of KuopioKuopioFinland
  3. 3.Department of PhysiologyUniversity of KuopioKuopioFinland
  4. 4.Finnish Forest Research InstituteSuonenjoki Research StationSuonenjokiFinland

Personalised recommendations