Assessment ofsolatium hougasii in Washington and Mexico as a source of resistance to late blight

  • D. A. Inglis
  • C. R. Brown
  • B. G. Gundersen
  • L. D. Porter
  • J. S. Miller
  • D. A. Johnson
  • H. Lozoya-Saldaña
  • K. G. Haynes
Article

Abstract

A segregating introgression population, established by crossing an accession ofSolanum hougasii from the central highlands of Mexico with two successive recurrent corky ringspot resistant parental lines, was screened againstPhytophthora infestans. Foliage and tuber reactions were compared under natural epidemics of US-8 and US-11P. infestans at Mount Vernon, Washington, natural epidemics at Toluca, Mexico, and by laboratory assays with US-8 and US-11P. infestans at Pullman, Washington. Relative area under disease progress curve (RAUDPC) values in the field ranged from 3 to 80 and 2 to 42 for the 1998 and 1999 populations at Mount Vernon, respectively, and from 5 to 63, 2 to 79, and 4 to 76 in 1998, 1999 and 2000 for the populations at Toluca, respectively. Of the progeny lines tested during 1998 and 1999 at Mount Vernon, 7% were resistant, 60% were intermediate, and 33% were susceptible. Of those tested during 1998, 1999, and 2000 at Toluca, 33, 31, and 36% were resistant, intermediate and susceptible, respectively. RAUDPC values in the field at Mount Vernon and Toluca were significantly (P = 0.0001) correlated. Late blight severity on detached leaflets inoculated with US-8 and US-11P. infestans in the laboratory ranged from 0 to 64% or 65%, respectively. Severity of infection on inoculated tubers ranged from 0 to 68% for US-8 and 0 to 80% for US-11. Disease severity on leaflets in laboratory tests was significantly correlated with field RAUDPC values, but tuber severity in laboratory tests was not, although some lines exhibited resistance in both the foliage and tubers. Foliar resistance in the field was characterized by leaf chlorosis, as well as limited lesion expansion and sporulation. Estimate of broad-sense heritability was relatively high. Only 15% of this BC1 population showed significant instability, giving little indication of specific interactions between genotypes and populations of theP. infestans pathogen that would be indicative of R-gene interactions. The introgression population (BC1) appears to be expressing highly heritable durable resistance. The high heritability estimate suggests that utilization of highly resistant and stable BC1 genotypes, such as 53.78, as a parental source of foliar late blight resistance will transmit substantial nonrace specific genetic resistance to future progenies, and that ultimately, after several cycles of backcrossing and selection, this genetic potential could be deployed in new potato cultivars.

Additional Key Words

disease resistance germplasm potato breeding 

Resumen

ElSolanum hougasii de las zonas montañosas centrales de México con dos líneas de progenitores sucesivamente recurrentes, resistentes al anillo corchoso, fue tamizado contraPhytophthora infestans. Se compararon reacciones de follaje y tubérculos de US-8 y US-11 bajo epidemia natural deP. infestans en Mount Vernon, Washington, epidemia natural en Toluca, Méxicoy por pruebas de laboratorio conP. infestans de US-8 y US-11 en Pullman, Washington. Los valores del área relativa de bajo de la curva de progreso de la enfermedad (RAUDPC) en el campo variaron de 3 a 80 y de 2 a 42 para poblaciones de 1998 y 1999 en Mount Vernon, respectivamente y de 5 a 63, 2 a 79 y 4 a 76 en 1998,1999 y 2000 respectivamente para poblaciones de Toluca. De las líneas de progenie probadas durante 1998 y 1999 en Vernon, el 7% fueron resistente, el 60 intermedias y 33% susceptibles. Entre aquellas probadas en Toluca durante 1998,1999 y 2000,33,31 y 36% fueron resistentes, intermediasy susceptibles respectivamente. Los valores RAUDPC en el campo en Mount Vernon y Toluca fueron significativamente correlacionados (P=0.0001). La severidad del tizón tardío en foliolos separados inoculados conP. infestans de US-8 y US-11 en el laboratorio variaron de 0-64% o 65% respectivamente. La severidad de infección en tubérculos inoculados varió de 0-68% para US-8 y de 0 a 80 para US-11. La severidad de la enfermedad en foliolos en pruebas de laboratorio fue significativamente correlacionada con los valores RAUDPC de campo, pero la severidad en el tubérculo de las pruebas de laboratorio no lo fue, aunque algunas líneas mostraron resistencia en el follaje y tubérculos. La resistencia foliar en el campo se caracterizó por clorosis, así como lesiones de expansión y esporulación limitadas. Los estimados de heredabilidad en sentido amplio fueron relativamente altos. Solo el 15% de esta poblacion BC1 mostró una significativa inestabilidad, dando poca indicatión de las interacciones específicas entre genotipos y poblaciones del patógenoP. infestans que indicaría interacciones de genes R. La población introgresiva (BC1) parece estar expresando resistencia hereditaria altamente durable. El alto grado de heredabilidad estimada sugiere que la utilizatión de genotipos BC1 altamente resistentes y estables, por ejemplo el 53.78, como fuente de resistencia de los progenitores altizón tardío foliar transmitirä la resistencia genética de raza no específica a futuras progenies y finalmente después de varios ciclos de retrocruzamientos y selection, este potencial genético puede ser desplegado en cultivares nuevos de papa.

Literature Cited

  1. Berger RD. 1977. Application of epidemiological principles to achieve plant disease control. Ann Rev Phytopathol 15:165–183.CrossRefGoogle Scholar
  2. Birhman RK and BP Singh. 1995. Path-coefficient analyses and genetic parameters of the components of field resistance of potatoes to late blight. Ann Appl Biol 127:353–362.CrossRefGoogle Scholar
  3. Brown CR, H Mojtahedi and GS Santo. 1991. Resistance to Columbia root-knot nematode inSolanum spp. and in hybrids ofS. hougasii with tetraploid cultivated potato. Am Potato J 68:445–452.CrossRefGoogle Scholar
  4. Brown CR, H Mojtahedi and GS Santo. 1999. Genetic analysis of resistance toMeloidogyne chitwoodi introgressed fromSolanum hougasii in cultivated potato. J Nematol 31:264–271.PubMedGoogle Scholar
  5. Brown CR, H Mojtahedi and GS Santo. 2003. Characteristics of resistance to Columbia root-knot nematode introgressed from several Mexican and North American wild potato species. Acta Horticulturae 619:117–125.Google Scholar
  6. Brown CR, H Mojtahedi, GS Santo and S Austin-Phillips. 1994. Enhancing resistance to root-knot nematodes derived from wildSolanum species in potato germplasm.In: GW Zehnder, ML Powelson, RK Jansson and KV Raman (eds), Advances in Potato Pest Biology and Management. Amer Phytopathology Soc, Minneapolis, MN. pp 426–438.Google Scholar
  7. Cañizares CA and GA Forbes. 1995. Foliage resistance toPhytophthora infestans (Mont.) deBary in the Ecuadorian national collection ofSolanum phureja ssp.phureja Juz. and Buk. Potato Res 38:3–10.CrossRefGoogle Scholar
  8. Cockerham G. 1970. Genetical studies on resistance to potato viruses X and Y. Heredity 25:309–348.CrossRefGoogle Scholar
  9. Colon LT and DJ Budding. 1988. Resistance to late blight (Phytophthora infestans) in ten wildSolanum species. Euphytica S:77–86.Google Scholar
  10. Colon LT, DJ Budding, P Keizer and MMJ Pieters. 1995a. Components of resistance to late blight (Phytophthora infestans) in eight South AmericanSolanum species. Eur J Plant Path 101:441–456.CrossRefGoogle Scholar
  11. Colon LT, RC Jansen and DJ Budding. 1995b. Partial resistance to late blight (Phytophthora infestans) in hybrid progenies of four South AmericanSolanum species crossed with diploidS. tuberosum. Theor Appl Genet 90:691–698.CrossRefGoogle Scholar
  12. Correll DS. 1962. The potato and its wild relatives. Texas Research Foundation, Renner, TX.Google Scholar
  13. Derie ML and DA Inglis. 2001. Persistence of complex virulences ofPhytophthora infestans in western Washington. Phytopathology 91:606–612.CrossRefPubMedGoogle Scholar
  14. Dorrance AE and DA Inglis. 1997. Assessment of greenhouse and laboratory screening methods for evaluating potato foliage for resistance to late blight. Plant Dis 81:1206–1213.CrossRefGoogle Scholar
  15. Dorrance AE and DA Inglis. 1998. Assessment of laboratory methods for evaluating potato tubers for resistance to late blight. Plant Dis 82:442–446.CrossRefGoogle Scholar
  16. Douches DS, JB Bamberg, W Kirk, K Jastrzebski, BA Niemira, J Coombs, DA Bisognin and KJ Felcher. 2001. Evaluation of wild Solarium species for resistance to the US-8 genotype ofPhytophthora infestans utilizing a fine-screening technique. Amer J Potato Res 78:159–165.Google Scholar
  17. Estrada-Ramos N. 2000. La biodiversidad en el mejoramiento genético de la papa. Centro de Informatión para el Desarrollo. La Paz, Bolivia.Google Scholar
  18. Flores-Crespo R. 1969. Taxonomía, distributión y potencial de losSolarium tuberíferos silvestres de México. Folleto misceláneo num. 20, Instituto Nacional de Investigaciones Agrícolas, SAG. México.Google Scholar
  19. Fry WE. 1978. Quantification of general resistance of potato cultivars and fungicide effects for integrated control of potato late blight. Phytopathology 68:1650–1655.Google Scholar
  20. Glass JR, KB Johnson and ML Powelson. 2001. Assessment of barriers to prevent the development of potato tuber blight caused byPhytophthora infestans. Plant Dis 85:521–528.CrossRefGoogle Scholar
  21. Goodwin SB, A Drenth and WE Fry. 1992a. Cloning and genetic analysis of two highly polymorphic, moderately repetitive nuclear DNAs fromPhytophthora infestans. Curr Genet 22:107:115.CrossRefPubMedGoogle Scholar
  22. Goodwin SB, RE Schneider and WE Fry. 1995. Use of cellulose-acetate electrophoresis for rapid identification of allozyme genotypes ofPhytophthora infestans. Plant Dis 79:1181–1185.Google Scholar
  23. Goodwin SB, CD Smart, RW Sandrock KL Deahl, ZK Punja and WE Fry. 1998. Genetic change within populations ofPhytophthora infestans in the United States and Canada during 1994 to 1996: Role of migration and recombination. Phytopathology 88:939–949.CrossRefPubMedGoogle Scholar
  24. Goodwin SB, LJ Spielman, JM Matuszak, SN Bergeron and WE Fry. 1992b. Clonal diversity and genetic differentiation ofPhytophthora infestans populations in northern and central Mexico. Phytopathology 82:955–961.CrossRefGoogle Scholar
  25. Gundersen B, D Inglis, L Porter, J Miller, D Johnson and C Brown. 2000. Comprehensive laboratory and field assessment of resistance toPhytophthora infestans derived fromSolanum hougasii in a segregating breeding population. Amer J Potato Res 77:399.Google Scholar
  26. Hawkes JG. 1990. The Potato: Evolution, biodiversity, and genetic resources. Smithsonian Institution Press, Washington D.C.Google Scholar
  27. Henfling JW. 1987. Late blight of potato,Phytophthora infestans. Technical Information Bulletin 4. International Potato Center, CIP, Perú.Google Scholar
  28. Hodgson WA. 1961. Laboratory testing of the potato for partial resistance toPhytophthora infestans. Am Potato J 38:259–264.CrossRefGoogle Scholar
  29. Inglis DA, DA Johnson, DE Legard, WE Fry and PB Hamm. 1996. Relative resistances of potato clones in response to new and old populations ofPhytophthora infestans. Plant Dis 80:575–578.Google Scholar
  30. Kang MS. 1989. A new SAS program for calculating stability-variance parameters. J Hered 80:415.Google Scholar
  31. Kirk WW, KJ Felcher, DS Douches, BA Niemira and R Hammerschmidt. 2001. Susceptibility of potato (Solanum tuberosum L.) foliage and tubers to the US-8 genotype ofPhytophthora infestans. Amer J Potato Res 78:319–322.Google Scholar
  32. Knapp SJ, WW Stroup and WM Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194.Google Scholar
  33. Matsubayashi M. 1981. Species differentiation in tuberousSolanum and the origin of cultivated potatoes. Recent Advances in Breeding 22:86–106 (in Japanese).Google Scholar
  34. Miller JS, PB Hamm and DA Johnson. 1997. Characterization of thePhytophthora infestans population in the Columbia Basin of Oregon and Washington from 1992 to 1995. Phytopathology 87:656–660.CrossRefPubMedGoogle Scholar
  35. Miller JS, DA Johnson and PB Hamm. 1998. Aggressiveness of isolates ofPhytophthora infestans from the Columbia Basin of Washington and Oregon. Phytopathology 88:190–197.CrossRefPubMedGoogle Scholar
  36. Pavek JJ and DL Corsini. 2001. Utilization of potato genetic resources in variety development. Amer J Potato Res 78:433–441.CrossRefGoogle Scholar
  37. Porter LD, DA Inglis and DA Johnson. 2004. Identification and characterization of resistance toPhytophthora infestans in leaves, stems, flowers, and tubers of eight clones in the Pacific Northwest. Plant Dis 88:965–972.CrossRefGoogle Scholar
  38. Rivera-Peña A. 1990. Wild tuber-bearing species ofSolanum and incidence ofPhytophthora infestans (Mont.) De Bary on the western slopes of the volcano Nevado de Toluca, 5. Type of resistance to P.infestans. Potato Res 33:479–486.CrossRefGoogle Scholar
  39. Rivera-Peña A. 1995. Racial composition in a population ofPhytophthora infestans (Mont.) De Bary in the Toluca Valley and slopes of the volcano Nevado de Toluca over the period 1989-1994.In: LJ Dowley, E Bannon LR Cooke, T Keant and EO Sullivan (eds),Phytophthora infestans 150. EAPR, Dublin, pp 116–121.Google Scholar
  40. Shukla GK. 1972. Some statistical aspects of partitioning genotypeenvironment components of variability. Heredity 29:237–245.CrossRefPubMedGoogle Scholar
  41. Simko I, S Costanzo, V Ramanjulu, BJ Christ and KG Haynes. 2006. Mapping polygenes for tuber resistance to late blight in a diploidSolanum phureja x S. stenotomum hybrid population. Plant Breeding 125. In press.Google Scholar
  42. Spooner DM, RG van den Berg and JB Bamberg. 1995. Examination of species boundaries ofSolanum series Demissa and potentially related species in series Acaulia and series Tuberosa (sect. Petota). Systematic Botany 20:295–314.CrossRefGoogle Scholar
  43. Tooley PW, JA Sweigard and WE Fry. 1986. Fitness and virulence ofPhytophthora infestans isolates from sexual and asexual populations. Phytopathology 76:1209–1212.CrossRefGoogle Scholar
  44. Umaerus V, M Umaerus, L Erjefalt and BA Nilsson. 1983. Control ofPhytophthora by host resistance: Problems and progress.In: DC Erwin, S Barnicki-Garcia and PH Tsao (eds),Phytophthora: Its Biology, Taxonomy, Ecology and Pathology. American Phytopathological Society, St. Paul, MN. pp 315–326.Google Scholar
  45. Wastie RL. 1991. Breeding for resistance.In:Phytophthora infestans, the cause of late blight on potato.In: DS Ingram and PH Williams (eds), Advances in Plant Pathology, vol. 7. Academic Press, London, pp 193–224.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • D. A. Inglis
    • 1
  • C. R. Brown
    • 2
  • B. G. Gundersen
    • 1
  • L. D. Porter
    • 2
  • J. S. Miller
    • 3
  • D. A. Johnson
    • 4
  • H. Lozoya-Saldaña
    • 5
  • K. G. Haynes
    • 6
  1. 1.WSU-Mount Vernon Northwestern Washington Research and Extension CenterMount VernonUSA
  2. 2.Irrigated Agriculture Research and Extension CenterUSDA-ARSProsserUSA
  3. 3.Aberdeen Research and Extension CenterUniversity of IdahoUSA
  4. 4.Department of Plant PathologyWashington State UniversityPullmanUSA
  5. 5.Departamento de FitotecniaUniversidad Autónoma de ChapingoEdo. de MéxicoMéxico
  6. 6.USDA/ARSBeltsvilleUSA

Personalised recommendations