The Mathematical Intelligencer

, Volume 29, Issue 2, pp 49–58 | Cite as

Before carrying out these transformations, make sure the glasses are not filled too full

  • Bill BaritompaEmail author
  • Rainer Löwen
  • Burkard polster
  • Marty Ross
Article Mathematical Table-turning Revisited


Mathematical Intelligencer Lipschitz Constant Conic Section Balance Position Mathematical Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    de Mira Fernandes, A. Funzioni continue sopra una superficie sferica.Portugaliae Math 4 (1943), 69–72.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Dyson, F. J. Continuous functions defined on spheres.Ann. of Math. 54 (1951), 534–536.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Emch, A. Some properties of closed convex curves in a plane,Amer. J. Math. XXXV (1913), 407–412.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Fenn, Roger. The table theorem.Bull. London Math. Soc. 2 (1970), 73–76.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Fenn, Roger. Some applications of the width and breadth of a closed curve to the two-dimensional sphere.J. London Math. Soc. (2)10 (1975), 219–222.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Floyd, E. E. Real-valued mappings of spheres.Proc. Amer. Math. Soc. 6(1955), 957–959.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    Gardner, Martin. Mathematical Games column inScientific American (May 1973), 104.Google Scholar
  8. [8]
    Gardner, Martin. Mathematical Games column inScientific American (June 1973), 109–110.Google Scholar
  9. [9]
    Gardner, Martin.Knotted Doughnuts and Other Mathematical En- tertainments. W.H. Freeman and Company, New York, 1986.Google Scholar
  10. [10]
    Hadwiger, H. Ein Satz über stetige Funktionen auf der Kugelfläche.Arch. Math. 11 (1960), 65–68.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Hunziker, Markus. The Wobbly Table Problem.In Summation Vol. 7 (April 2005), 5–7 (Newsletter of the Department of Mathematics, Baylor University).Google Scholar
  12. [12]
    Joshi, Kapil D. A non-symmetric generalization of the Borsuk-Ulam theorem.Fund. Math. 80 (1973), 13–33.zbMATHMathSciNetGoogle Scholar
  13. [13]
    Kraft, Hanspeter. The wobbly garden table.J. Biol. Phys. Chem. 1 (2001), 95–96.CrossRefGoogle Scholar
  14. [14]
    Kronheimer, E. H. and Kronheimer, P. B. The tripos problem.J. London Math. Soc. 24 (1981), 182–192.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Livesay, George R. On a theorem of F. J. Dyson.Ann. of Math. 59 (1954), 227–229.CrossRefMathSciNetGoogle Scholar
  16. [16]
    Martin, Andre. On the stability of four feet tables. http://=20 Scholar
  17. [17]
    Meyerson, Mark D. Balancing acts. The Proceedings of the 1981 Topology Conference (Blacksburg, Va., 1981),Topology Proc. 6 (1981), 59–75.MathSciNetGoogle Scholar
  18. [18]
    Meyerson, Mark D. Convexity and the table theorem.Pacific J. Math. 97 (1981), 167–169.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    Meyerson, Mark D. Remarks on Fenn’s “the table theorem” and Zaks’ “the chair theorem”.Pacific J. Math. 110 (1984), 167–169.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Polster, Burkard; Ross, Marty and QED (the cat). Table Turning Mathsnack inVinculum 42(2), June 2005. (Vinculum is the quarterly magazine for secondary school teachers published by the Mathematical Association of Victoria, Australia. Also available at Scholar
  21. [21]
    Royden, H. L,Peal Analysis. Prentice-Hall, 1988.Google Scholar
  22. [22]
    Vinculum, Editorial Board. Mathematical inquiry—from a snack to a meal.Vinculum,42(3), September 2005, 11–12 (also available at Scholar
  23. [23]
    Polster, Burkard; Ross, Marty and QED (the cat). Turning the Tables: feasting from a mathsnack.Vinculum 42(4), 4 November 2005, 6–9 (also available at Scholar
  24. [24]
    Yamabe, Hidehiko and Yujobô;, Zuiman. On the continuous function defined on a sphere.Osaka Math. J. 2 (1950), 19–22.zbMATHMathSciNetGoogle Scholar
  25. [25]
    Yang, Chung-Tao. On theorems of Borsuk-Ulam, Kakutani-Yam-abe-Yujobô and Dyson. I.Ann. of Math. 60 (1954), 262–282.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    Yang, Chung-Tao. On theorems of Borsuk-Ulam, Kakutani-Yam-abe-Yujobo and Dyson. II.Ann. of Math. 62 (1955), 271–283.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    Yang, Chung-Tao. Continuous functions from spheres to euclid-ean spaces.Ann. of Math. 62 (1955), 284–292.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    Yang, Chung-Tao. On maps from spheres to euclidean spaces.Amer. J. Math. 79 (1957), 725–732.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    Zaks, Joseph. The chair theorem. Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1971), pp. 557–562. Lousiana State Univ., Baton Rouge, 1971.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Bill Baritompa
    • 1
    Email author
  • Rainer Löwen
    • 2
  • Burkard polster
    • 3
  • Marty Ross
    • 4
  1. 1.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand
  2. 2.Institut für Analysis und AlgebraTechnische UniversitätBraunschweigGermany
  3. 3.School of Mathematical SciencesMonash UniversityVictoriaAustralia
  4. 4.FairfieldAustralia

Personalised recommendations