Advertisement

Journal of Genetics

, 48:31 | Cite as

TheP-locus position effect inOenothera

  • D. G. Catcheside
Article

Summary

InOenothera blandina, the genesP s ,P r andS produce a variegated phenotype when they are present in the interchange chromosome 3.11. When transferred by crossing-over to a normal 3.4 chromosome, they produce normal phenotypes. The variegation is therefore a position effect.

The break is 1·7 units from theP locus and 8·5 units from theS locus, indicating a considerable spread of the position effect along the chromosome. The action is thought to depend on translocation of theP andS loci to the neighbourhood of heterochromatin.

Theories of the mechanism of position effect are considered, but theOenothera case adds nothing new to the solution of the problem.

Keywords

Pollen Tube Position Effect Abnormal Position Homologous Part Variegated Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Blakeslee, A. F. &Bergner, D. (1940).Yearb. Carneg. Instn,39, 207–8.Google Scholar
  2. Bridges, C. B. (1936).Science,83, 210–11.PubMedCrossRefGoogle Scholar
  3. Brink, R. A. (1932).Amer. Nat. 66, 444–51.CrossRefGoogle Scholar
  4. Catcheside, D. G. (1935).Genetica,19, 134–42.CrossRefGoogle Scholar
  5. Catcheside, D. G. (1939).J. Genet. 38, 345–52.CrossRefGoogle Scholar
  6. Catcheside, D. G. (1940).Proc. Roy. Soc. B,128, 509–35.Google Scholar
  7. Demerec, M. (1940).Genetics,25, 618–27.PubMedGoogle Scholar
  8. Demerec, M. &Hoover, M. E. (1939).Genetics,24, 271–7.PubMedGoogle Scholar
  9. Demerec, M. &Slizynska, H. (1937).Genetics,22, 641–9.PubMedGoogle Scholar
  10. Dobzhansky, Th. (1936).Biol. Rev. 11, 364–84.CrossRefGoogle Scholar
  11. Dubinin, N. P. (1936).Biol. Zh. 5, 851–74.Google Scholar
  12. Dubinin, N. P. &Sidorov, B. N. (1934a).Amer. Nat. 68, 377–81.CrossRefGoogle Scholar
  13. Dubinin, N. P. &Sidorov, B. N. (1934b).Biol. Zh. 3, 307–31.Google Scholar
  14. Emerson, S. H. &Sturtevant, A. H. (1932).Genetics,17, 393–412.PubMedGoogle Scholar
  15. Ephrussi, B. &Sutton, E. (1944).Proc. Nat. Acad. Sci., Wash.,30, 183–97.CrossRefGoogle Scholar
  16. Gowen, J. W. &Gay, E. H. (1933a).Proc. Nat. Acad. Sci., Wash.,19, 122–6.CrossRefGoogle Scholar
  17. Gowen, J. W. &Gay, E. H. (1933b).Science,77, 312.PubMedCrossRefGoogle Scholar
  18. Jones, D. F. (1939).Genetics,24, 100.Google Scholar
  19. Jones, D. F. (1944).Genetics,29, 420–7.PubMedGoogle Scholar
  20. Lea, D. E. &Catcheside, D. G. (1945).J. Genet. 47, 10–24.CrossRefGoogle Scholar
  21. Lewis, E. B. (1945).Genetics,30, 137–66.PubMedGoogle Scholar
  22. Muller, H. J. (1935).Proc. 15th Int. Physiol. Congr., Leningrad.Google Scholar
  23. Prokofyeva-Belgovskaya, A. A. (1945).C.R. Acad. Sci. U.R.S.S. 47, 360–2.Google Scholar
  24. Roberts, L. M. (1942).Genetics,27, 584–603.PubMedGoogle Scholar
  25. Saccharov, V. V. (1936).Biol. Zh. 5, 293–302.Google Scholar
  26. Savchenko, P. F. (1935).Bull. Appl. Bot. Genet. Plant Breed. 8, 59–79 (Russ.) (Eng. Sum. pp. 183–9).Google Scholar
  27. Schultz, J. (1936).Proc. Nat. Acad. Sci., Wash.,22, 27–33.CrossRefGoogle Scholar
  28. Schultz, J. (1941).Cold Spr. Harb. Symp. Quant. Biol. 9, 55–65.Google Scholar
  29. Stadler, L. J. (1941).Cold Spr. Harb. Symp. Quant. Biol. 9, 168–77.Google Scholar
  30. Stern, C. &Heidenthal, G. (1944).Proc. Nat. Acad. Sci., Wash.,30, 197–205.CrossRefGoogle Scholar
  31. Sturtevant, A. H. (1925).Genetics,10, 117–47.PubMedGoogle Scholar
  32. Sutton, E. (1943).Genetics,28, 97–107.PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 1947

Authors and Affiliations

  • D. G. Catcheside
    • 1
  1. 1.Botany SchoolCambridge

Personalised recommendations