Advertisement

The Mathematical Intelligencer

, Volume 27, Issue 4, pp 36–38 | Cite as

Cogwheels of the mind. The story of venn diagrams

  • Peter Hamburger
Department Review

Keywords

Binary Code Venn Diagram Dual Graph Euler Diagram Boolean Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. E. Baron, “A Note on the Historical Development of Logic Diagrams: Leibniz, Euler and Venn,Mathematical Gazette 53 (1969), 113–125.CrossRefzbMATHGoogle Scholar
  2. [2]
    K. B. Chilakamarri, P. Hamburger, R. E. Pippert, “Hamilton Cycles in Planar Graphs and Venn Diagrams,”Journal of Combinatorial Theory Series B 67 (1996), 296–303.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    B. Cipra, “Venn Meets Boole in Symmetric Proof,”SIAM News 37, no. 1 (January/February 2004).Google Scholar
  4. [4]
    L. Euler, Lettres à une Princesse d’Allemangne, St. Petersburg, 1768. English translation: H. Hunter,Letters to a German Princess, London, (1795).Google Scholar
  5. [5]
    J. Griggs, C. E. Killian, C. D. Savage, “Venn diagrams and symmetric chain decompositions in the Boolean lattice,”The Electronic Journal of Combinatorics (2004)Google Scholar
  6. [6]
    B. Grunbaum, “Venn Diagrams and Independent Families of Sets,”Mathematics Magazine 48 (1975), 12–22.CrossRefMathSciNetGoogle Scholar
  7. [7]
    B. Grunbaum, “The construction of Venn diagrams,”College Mathematics Journal 15 (1984), 238–247.CrossRefMathSciNetGoogle Scholar
  8. [8]
    B. Grunbaum, “Venn diagrams I,”Geombinatorics 1 (1992), 5–12.MathSciNetGoogle Scholar
  9. [9]
    D. W. Henderson, “Venn Diagrams for More Than Four Classes,”American Mathematical Monthly 70 (1963), 424–426.CrossRefGoogle Scholar
  10. [10]
    A. Renyi, V. Renyi, and J. Suranyi, “Sur I’lndependance des Domaines Simples dans I”Espace Euclidien a n-dimensions,”Colloquium Mathematicum 2 (1951), 130–135.zbMATHMathSciNetGoogle Scholar
  11. [11]
    F. Ruskey, M. Weston,The Electronic Journal of Combinatorics, www.combinatorics.org/SurveysA/ennEJC.htmlGoogle Scholar
  12. [12]
    J. Venn, “On the diagrammatic and mechanical representation of propositions and reasonings,”The London, Edinburgh, and Dublin Philos. Mag. and J. Sci. 9 (1880), 1–18.Google Scholar
  13. [13]
    J. Venn, Symbolic Logic, Macmillan, London, 1881, second edition 1894.CrossRefGoogle Scholar
  14. [14]
    P. Winkler, “Venn diagrams: some observations and an open problem,”Congressus Numerantium 45 (1984), 267–274.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndiana University-Purdue UniversityFort WayneUSA

Personalised recommendations