The Mathematical Intelligencer

, Volume 27, Issue 4, pp 36–38 | Cite as

Cogwheels of the mind. The story of venn diagrams

Department Review


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. E. Baron, “A Note on the Historical Development of Logic Diagrams: Leibniz, Euler and Venn,Mathematical Gazette 53 (1969), 113–125.CrossRefMATHGoogle Scholar
  2. [2]
    K. B. Chilakamarri, P. Hamburger, R. E. Pippert, “Hamilton Cycles in Planar Graphs and Venn Diagrams,”Journal of Combinatorial Theory Series B 67 (1996), 296–303.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    B. Cipra, “Venn Meets Boole in Symmetric Proof,”SIAM News 37, no. 1 (January/February 2004).Google Scholar
  4. [4]
    L. Euler, Lettres à une Princesse d’Allemangne, St. Petersburg, 1768. English translation: H. Hunter,Letters to a German Princess, London, (1795).Google Scholar
  5. [5]
    J. Griggs, C. E. Killian, C. D. Savage, “Venn diagrams and symmetric chain decompositions in the Boolean lattice,”The Electronic Journal of Combinatorics (2004)Google Scholar
  6. [6]
    B. Grunbaum, “Venn Diagrams and Independent Families of Sets,”Mathematics Magazine 48 (1975), 12–22.CrossRefMathSciNetGoogle Scholar
  7. [7]
    B. Grunbaum, “The construction of Venn diagrams,”College Mathematics Journal 15 (1984), 238–247.CrossRefMathSciNetGoogle Scholar
  8. [8]
    B. Grunbaum, “Venn diagrams I,”Geombinatorics 1 (1992), 5–12.MathSciNetGoogle Scholar
  9. [9]
    D. W. Henderson, “Venn Diagrams for More Than Four Classes,”American Mathematical Monthly 70 (1963), 424–426.CrossRefGoogle Scholar
  10. [10]
    A. Renyi, V. Renyi, and J. Suranyi, “Sur I’lndependance des Domaines Simples dans I”Espace Euclidien a n-dimensions,”Colloquium Mathematicum 2 (1951), 130–135.MATHMathSciNetGoogle Scholar
  11. [11]
    F. Ruskey, M. Weston,The Electronic Journal of Combinatorics, Scholar
  12. [12]
    J. Venn, “On the diagrammatic and mechanical representation of propositions and reasonings,”The London, Edinburgh, and Dublin Philos. Mag. and J. Sci. 9 (1880), 1–18.Google Scholar
  13. [13]
    J. Venn, Symbolic Logic, Macmillan, London, 1881, second edition 1894.CrossRefGoogle Scholar
  14. [14]
    P. Winkler, “Venn diagrams: some observations and an open problem,”Congressus Numerantium 45 (1984), 267–274.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndiana University-Purdue UniversityFort WayneUSA

Personalised recommendations