The Mathematical Intelligencer

, Volume 27, Issue 3, pp 6–7

On the convergence of the sequence defining euler’s number

  • Markus Brede


  1. [Abramowitz, Stegun]: M. Abramowitz, I.A. Stegun,Handbook of Mathematical Functions, Dover Publications, New York, 1964.MATHGoogle Scholar
  2. [Brothers, Knox J: H.J. Brothers, J.A. Knox, New closed-form approximations to the logarithmic constant e,The Mathematical Intelligencer 20(4), 25–29, 1998.CrossRefMATHMathSciNetGoogle Scholar
  3. [Hansen]: E.R. Hansen,A Table of Series and Products, Prentice-Hall, Englewood Cliffs, N.J., 1975.Google Scholar
  4. [Knox, Brothers]: J.A. Knox, H.J. Brothers, Novel series-based approximations to e,The College Mathematics Journal 30(4), 269–275, 1999.CrossRefMATHMathSciNetGoogle Scholar
  5. [Todorov]: P.G. Todorov, Taylor expansions of analytic functions related to (1 + z)x - 1,Journal of Mathematical Analysis and Applications 132, 264–280, 1988.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Markus Brede
    • 1
  1. 1.Fachbereich 17-Mathematik/InformatikUniversität KasselKasselGermany

Personalised recommendations