The Mathematical Intelligencer

, Volume 27, Issue 2, pp 52–64 | Cite as

Some notes on the magic squares of squares problem

Article

Keywords

Fermat Centre Cell Mathematical Intelligencer Fourth Power Consecutive Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gaston Benneton, Sur un problème d’Euler,Comptes-Rendus Hebdomadaires des Séances de I’Acadèmie des Sciences 214(1942), 459–461.MATHGoogle Scholar
  2. [2]
    Gaston Benneton, Arithmètique des Quaternions,Bulletin de la Société Mathématiquede France 71(1943), 78–111.MATHGoogle Scholar
  3. [3]
    William Bensonand Oswald Jacoby,New recreations with magic squares, Dover, New York, 1976, 84–92Google Scholar
  4. [4]
    Christian Boyer, Les premiers carres tetra et pentamagiques,Pour La Science Nº286, August 2001, 98–102.Google Scholar
  5. [5]
    Christian Boyer, Les cubes magiques,Pour La Science Nº311, September 2003, 90–95.Google Scholar
  6. [6]
    Christian Boyer, Le plus petit cube magique parfait,La Recherche, Nº373, March 2004, 48–50.Google Scholar
  7. [7]
    Christian Boyer, Multimagic squares, cubes and hypercubes web site,www.multimagie.com/indexengl.htm Google Scholar
  8. [8]
    Christian Boyer, A search for 3 x 3 magic squares having more than six square integers among their nine distinct integers, preprint, September 2004Google Scholar
  9. [9]
    Christian Boyer, Supplement to the article “ Some notes on the magic squares of squares problem”, downloadable from [7], 2005Google Scholar
  10. [10]
    Andrew Bremner, On squares of squares,Acta Arithmetica, 88(1999), 289–297.MATHMathSciNetGoogle Scholar
  11. [11]
    Andrew Bremner, On squares of squares II,Acta Arithmetica, 99(2001), 289–308.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    Duncan A. Buell, A search for a magic hourglass, preprint, 1999Google Scholar
  13. [13]
    Robert D. Carmichael, Impossibility of the equation x3 + y3 = 2mz3, and On the equation ax4 + by4 = cz2,Diophantine Analysis, John Wiley and Sons, New-York, 1915, 67–72 and 77–79 (reprint by Dover Publications, New York, in 1959 and 2004)Google Scholar
  14. [14]
    Augustin Cauchy, Démonstration complete du théorème général de Fermat sur les nombres polygones,œuvres complètes, 11-6(1887), 320–353Google Scholar
  15. [15]
    Arthur Cayley, Recherche ultérieure sur les determinants gauches,Journal fürdie reine und angewandte Mathematik 50(1855), 299–313Google Scholar
  16. [16]
    General Cazalas,Carres magiques au degre n, Hermann, Paris, 1934Google Scholar
  17. [17]
    Leonhard Euler, Demonstratio theorematis Fermatiani omnem numerum sive integrum sive fractum esse summam quatuor pauciorumve quadratorum,Novi commentarii academiae scientiarum Petropolitanae 5(1754/5) 1760, 13–58 (reprint in EulerOpera Omnia,1–2, 338–372)Google Scholar
  18. [18]
    Leonhard Euler, Problema algebraicum ob affectiones prorsus singulares memorabile,Novi commentarii academiae scientiarum Petropolitanae, 15(1770) 1771, 75–106 (reprint in EulerOpera Omnia,1-6, 287–315)Google Scholar
  19. [19]
    Leonhard Euler, De motu corporum circa punctum fixum mobilium,Opera postuma 2(1862), 43–62 (reprint in EulerOpera Omnia,11-9, 431–441)Google Scholar
  20. [20]
    Andrew H. Frost, Invention of Magic Cubes,Quart. J. Math. 7 (1866), 92–102Google Scholar
  21. [21]
    P.-H. Fuss, Lettre CXV, Euler á Goldbach, Berlin 4 mai 1748,Correspondance mathématiqueet physique de quelques célèbresgeometres du XVIIIème siècle, St-Petersburg (1843), 450–455 (reprint by Johnson Reprint Corporation, 1968)Google Scholar
  22. [22]
    Martin Gardner, Mathematical Games: A Breakthrough in Magic Squares, and the First Perfect Magic Cube,Scientific American 234 (Jan. 1976), 118–123CrossRefGoogle Scholar
  23. [23]
    Martin Gardner, Mathematical Games: Some Elegant Brick-Packing Problems, and a New Order-7 Perfect Magic Cube,Scientific American 234 (Feb. 1976), 122–129CrossRefGoogle Scholar
  24. [24]
    Martin Gardner, Magic squares and cubes,Time Travel and Other Mathematical Bewilderments, Freeman, New York, 1988, 213- 225Google Scholar
  25. [25]
    Martin Gardner, The magic of 3 x 3,Quantum 6(1996), nº3, 24–26MathSciNetGoogle Scholar
  26. [26]
    Martin Gardner, The latest magic,Quantum 6(1996), nº4, 60Google Scholar
  27. [27]
    Martin Gardner, An unusual magic square and a prize offer,OFF, no. 45, February 1998, 8 [28] Martin Gardner, A quarter-century of recreational mathematics,Scientific American 279 (August 1998), 48–54Google Scholar
  28. [29]
    Richard K. Guy & Richard J. Nowakowski, Monthly unsolved problems,American Math. Monthly 102(1995), 921–926; 104(1997), 967–973; 105(1998), 951–954; 106(1999), 959–962CrossRefMATHGoogle Scholar
  29. [30]
    Richard K. Guy, Problem D15-Numbers whose sums in pairs make squares,Unsolved Problems in Number Theory, Third edition, Springer, New-York, 2004, 268–271Google Scholar
  30. [31]
    John R. Hendricks, Towards the bimagic cube,The magic square course, self-published, 2nd edition, 1992, 411Google Scholar
  31. [32]
    John R. Hendricks, Note on the bimagic square of order 3,J. Recreational Mathematics 29(1998), 265–267.Google Scholar
  32. [33]
    John R. Hendricks,Bimagic cube of order 25, self-published, 2000Google Scholar
  33. [34]
    John R. Hendricks, David M. Collison’s trimagic square,Math. Teacher 95(2002), 406Google Scholar
  34. [35]
    A. Huber, Probleme 196-Carré diabolique de 6 à deux degrés avec diagonales a trois degres, LesTablettes du Chercheur, Paris, April 1st 1892, 101, and May 1st, 1892, 139Google Scholar
  35. [36]
    Adolf Hurwitz, Ueber die Zahlentheorie der Quaternionen,Nachrichten von der Konigl. Gesellschaft der Wissenschaften zu Gottingen, 1896, 313–340 [Reprint in Mathematische Werke von Adolf Hurwitz, Birkhauser, Basel, 2(1963), 303–330.]Google Scholar
  36. [37]
    Adolf Hurwitz,Vorlesungen überdie Zahlentheorie der Quaternionen, Verlag von Julius Springer, Berlin, 1919, 61–72MATHGoogle Scholar
  37. [38]
    Martin LaBar, Problem 270,College Mathematics J. 15(1984), 69Google Scholar
  38. [39]
    Adrien-Marie Legendre,Theorie des Nombres, 3rd edition, Firmin- Didot, Paris, 2(1830), 4–5, 9–11, and 144–145 (reprint by Albert Blanchard, Paris, in 1955)Google Scholar
  39. [40]
    Edouard Lucas, Sur un problème d’Euler relatif aux carres magiques,Nouvelle Correspondance Mathematique 2(1876), 97–101Google Scholar
  40. [41]
    Edouard Lucas, Sur I’analyse indéterminée du troisième degré- Démonstration de plusieurs théorèmes de M. Sylvester,American Journal of Mathematics Pure and Applied 2(1879), 178–185Google Scholar
  41. [42]
    Edouard Lucas, Sur le carre de 3 et sur les carres a deux degres,Les Tablettes du Chercheur, March 1st 1891, 7 (reprint in [44] and inwww. multimagie. com/Francais/Lucas. htm)Google Scholar
  42. [43]
    Edouard Lucas,Theorie des Nombres, Gauthier-Villars, Paris, 1(1891) 129 (reprint by Albert Blanchard, Paris, in 1958 and other years) (reprint by Jacques Gabay, Paris, in 1992)Google Scholar
  43. [44]
    Edouard Lucas, Récréations Mathématiques, Gauthier-Villars, Paris, 4(1894) 226 (reprint by Albert Blanchard, Paris, in 1960 and other years)Google Scholar
  44. [45]
    G. Pfeffermann, Problème 172-Carré magique à deux degrés,Les Tablettes du Chercheur, Paris, Jan 15th 1891, p. 6 and Feb 1st 1891, 8Google Scholar
  45. [46]
    G. Pfeffermann, Problème 1506-Carré magique de 6 à deux degres (imparfait),Les Tablettes du Chercheur, Paris, March 15th 1894, 76, and April 15th 1894, 116Google Scholar
  46. [47]
    Clifford A. Pickover, Updates and Breakthroughs,The Zen of Magic Squares, Circles, and Stars, second printing and first paperback printing, Princeton University Press, Princeton, 2003, 395–401Google Scholar
  47. [48]
    Planck and E. Lieubray, Quelques carrés magiques remarquables,Sphinx, Brussels, 1(1931), 42 and 135Google Scholar
  48. [49]
    Landon W. Rabern, Properties of magic squares of squares,Rose- Hulman Institute of Technology Undergraduate Math Journal 4(2003), N.1Google Scholar
  49. [50]
    Carlos Rivera, Puzzle 79 “The Chebrakov’s Challenge”, Puzzle 287 “Multimagic prime squares,” and Puzzle 288 “Magic square of (prime) squares”,www.primepuzzles.net http://www.primepuzzles.net Google Scholar
  50. [51]
    John P. Robertson, Magic squares of squares,Mathematics Magazine 69(1996), nº4, 289–293CrossRefMATHMathSciNetGoogle Scholar
  51. [52]
    Lee Sallows, The lost theorem,The Mathematical Intelligencer 19(1997), nº4, 51–54CrossRefMATHGoogle Scholar
  52. [53]
    Richard Schroeppel, Item 50,HAKMEM Artificial Intelligence Memo M.I.T 239 (Feb. 29, 1972)Google Scholar
  53. [54]
    Richard Schroeppel, The center cell of a magic 53 is 63 (1976),www. multimagie. com/English/Schroeppel63. htm Google Scholar
  54. [55]
    J.-A. Serret, Demonstration d’un theoreme d’arithmétique, Œuvresde Lagrange, Gauthier-Villars, Paris, 3(1869), 189–201Google Scholar
  55. [56]
    J.-A. Serret and Gaston Darboux, Correspondance de Lagrange avec Euler, Lettre 25, Euler à Lagrange, Saint-Pétersbourg, 9/20 mars 1770, Œuvresde Lagrange, Gauthier-Villars, Paris, 14(1892), 219–224 (reprint in Euleri Opera Omnia,IV-A-5, 477–482)Google Scholar
  56. [57]
    Neil Sloane, Multimagic sequences A052457, A052458, A090037, A090653, A092312,ATT Research’sOnline Encyclopaedia of Integer Sequences, www.research.att.com/~njas/sequences http://www.research.att.com/~njas/sequences Google Scholar
  57. [58]
    Paul Tannery and Charles Henry, Lettre XXXVIIIb bis, Fermat à Mersenne, Toulouse, 1 avril 1640, Œuvresde Fermat, Gauthier-Villars, Paris, 2(1894), pp. 186–194 (partial reprint of the letter atwww.multimagie.com/Francais/Fermat.htm)Google Scholar
  58. [59]
    Gaston Tarry, Le carré trimagique de 128,Compte-Rendu de I’AssociationFrancaise pour I’Avancementdes Sciences, 34ème session Cherbourg (1905), 34–45Google Scholar
  59. [60]
    Walter Trump, Story of the smallest trimagic square, January 2003,www. multimagie. com/English/Tri 12Story.htm Google Scholar
  60. [61]
    R. Venkatachalam Iyer, A six-cell bimagic square,The Mathematics Student 29(1961), 29–31MATHGoogle Scholar
  61. [62]
    Eric Weisstein, Magic figures,MathWorld, http://mathworld. wolfram. com/topics/MagicFigures. html Google Scholar
  62. [63]
    Eric Weisstein, Perfect magic cube,MathWorld, http://mathworld.wolfram.com/PerfectMagicCube.html Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Enghien les BainsFrance

Personalised recommendations