The Mathematical Intelligencer

, Volume 27, Issue 2, pp 52–64 | Cite as

Some notes on the magic squares of squares problem

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gaston Benneton, Sur un problème d’Euler,Comptes-Rendus Hebdomadaires des Séances de I’Acadèmie des Sciences 214(1942), 459–461.MATHGoogle Scholar
  2. [2]
    Gaston Benneton, Arithmètique des Quaternions,Bulletin de la Société Mathématiquede France 71(1943), 78–111.MATHGoogle Scholar
  3. [3]
    William Bensonand Oswald Jacoby,New recreations with magic squares, Dover, New York, 1976, 84–92Google Scholar
  4. [4]
    Christian Boyer, Les premiers carres tetra et pentamagiques,Pour La Science Nº286, August 2001, 98–102.Google Scholar
  5. [5]
    Christian Boyer, Les cubes magiques,Pour La Science Nº311, September 2003, 90–95.Google Scholar
  6. [6]
    Christian Boyer, Le plus petit cube magique parfait,La Recherche, Nº373, March 2004, 48–50.Google Scholar
  7. [7]
    Christian Boyer, Multimagic squares, cubes and hypercubes web site,www.multimagie.com/indexengl.htm Google Scholar
  8. [8]
    Christian Boyer, A search for 3 x 3 magic squares having more than six square integers among their nine distinct integers, preprint, September 2004Google Scholar
  9. [9]
    Christian Boyer, Supplement to the article “ Some notes on the magic squares of squares problem”, downloadable from [7], 2005Google Scholar
  10. [10]
    Andrew Bremner, On squares of squares,Acta Arithmetica, 88(1999), 289–297.MATHMathSciNetGoogle Scholar
  11. [11]
    Andrew Bremner, On squares of squares II,Acta Arithmetica, 99(2001), 289–308.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    Duncan A. Buell, A search for a magic hourglass, preprint, 1999Google Scholar
  13. [13]
    Robert D. Carmichael, Impossibility of the equation x3 + y3 = 2mz3, and On the equation ax4 + by4 = cz2,Diophantine Analysis, John Wiley and Sons, New-York, 1915, 67–72 and 77–79 (reprint by Dover Publications, New York, in 1959 and 2004)Google Scholar
  14. [14]
    Augustin Cauchy, Démonstration complete du théorème général de Fermat sur les nombres polygones,œuvres complètes, 11-6(1887), 320–353Google Scholar
  15. [15]
    Arthur Cayley, Recherche ultérieure sur les determinants gauches,Journal fürdie reine und angewandte Mathematik 50(1855), 299–313Google Scholar
  16. [16]
    General Cazalas,Carres magiques au degre n, Hermann, Paris, 1934Google Scholar
  17. [17]
    Leonhard Euler, Demonstratio theorematis Fermatiani omnem numerum sive integrum sive fractum esse summam quatuor pauciorumve quadratorum,Novi commentarii academiae scientiarum Petropolitanae 5(1754/5) 1760, 13–58 (reprint in EulerOpera Omnia,1–2, 338–372)Google Scholar
  18. [18]
    Leonhard Euler, Problema algebraicum ob affectiones prorsus singulares memorabile,Novi commentarii academiae scientiarum Petropolitanae, 15(1770) 1771, 75–106 (reprint in EulerOpera Omnia,1-6, 287–315)Google Scholar
  19. [19]
    Leonhard Euler, De motu corporum circa punctum fixum mobilium,Opera postuma 2(1862), 43–62 (reprint in EulerOpera Omnia,11-9, 431–441)Google Scholar
  20. [20]
    Andrew H. Frost, Invention of Magic Cubes,Quart. J. Math. 7 (1866), 92–102Google Scholar
  21. [21]
    P.-H. Fuss, Lettre CXV, Euler á Goldbach, Berlin 4 mai 1748,Correspondance mathématiqueet physique de quelques célèbresgeometres du XVIIIème siècle, St-Petersburg (1843), 450–455 (reprint by Johnson Reprint Corporation, 1968)Google Scholar
  22. [22]
    Martin Gardner, Mathematical Games: A Breakthrough in Magic Squares, and the First Perfect Magic Cube,Scientific American 234 (Jan. 1976), 118–123CrossRefGoogle Scholar
  23. [23]
    Martin Gardner, Mathematical Games: Some Elegant Brick-Packing Problems, and a New Order-7 Perfect Magic Cube,Scientific American 234 (Feb. 1976), 122–129CrossRefGoogle Scholar
  24. [24]
    Martin Gardner, Magic squares and cubes,Time Travel and Other Mathematical Bewilderments, Freeman, New York, 1988, 213- 225Google Scholar
  25. [25]
    Martin Gardner, The magic of 3 x 3,Quantum 6(1996), nº3, 24–26MathSciNetGoogle Scholar
  26. [26]
    Martin Gardner, The latest magic,Quantum 6(1996), nº4, 60Google Scholar
  27. [27]
    Martin Gardner, An unusual magic square and a prize offer,OFF, no. 45, February 1998, 8 [28] Martin Gardner, A quarter-century of recreational mathematics,Scientific American 279 (August 1998), 48–54Google Scholar
  28. [29]
    Richard K. Guy & Richard J. Nowakowski, Monthly unsolved problems,American Math. Monthly 102(1995), 921–926; 104(1997), 967–973; 105(1998), 951–954; 106(1999), 959–962CrossRefMATHGoogle Scholar
  29. [30]
    Richard K. Guy, Problem D15-Numbers whose sums in pairs make squares,Unsolved Problems in Number Theory, Third edition, Springer, New-York, 2004, 268–271Google Scholar
  30. [31]
    John R. Hendricks, Towards the bimagic cube,The magic square course, self-published, 2nd edition, 1992, 411Google Scholar
  31. [32]
    John R. Hendricks, Note on the bimagic square of order 3,J. Recreational Mathematics 29(1998), 265–267.Google Scholar
  32. [33]
    John R. Hendricks,Bimagic cube of order 25, self-published, 2000Google Scholar
  33. [34]
    John R. Hendricks, David M. Collison’s trimagic square,Math. Teacher 95(2002), 406Google Scholar
  34. [35]
    A. Huber, Probleme 196-Carré diabolique de 6 à deux degrés avec diagonales a trois degres, LesTablettes du Chercheur, Paris, April 1st 1892, 101, and May 1st, 1892, 139Google Scholar
  35. [36]
    Adolf Hurwitz, Ueber die Zahlentheorie der Quaternionen,Nachrichten von der Konigl. Gesellschaft der Wissenschaften zu Gottingen, 1896, 313–340 [Reprint in Mathematische Werke von Adolf Hurwitz, Birkhauser, Basel, 2(1963), 303–330.]Google Scholar
  36. [37]
    Adolf Hurwitz,Vorlesungen überdie Zahlentheorie der Quaternionen, Verlag von Julius Springer, Berlin, 1919, 61–72MATHGoogle Scholar
  37. [38]
    Martin LaBar, Problem 270,College Mathematics J. 15(1984), 69Google Scholar
  38. [39]
    Adrien-Marie Legendre,Theorie des Nombres, 3rd edition, Firmin- Didot, Paris, 2(1830), 4–5, 9–11, and 144–145 (reprint by Albert Blanchard, Paris, in 1955)Google Scholar
  39. [40]
    Edouard Lucas, Sur un problème d’Euler relatif aux carres magiques,Nouvelle Correspondance Mathematique 2(1876), 97–101Google Scholar
  40. [41]
    Edouard Lucas, Sur I’analyse indéterminée du troisième degré- Démonstration de plusieurs théorèmes de M. Sylvester,American Journal of Mathematics Pure and Applied 2(1879), 178–185Google Scholar
  41. [42]
    Edouard Lucas, Sur le carre de 3 et sur les carres a deux degres,Les Tablettes du Chercheur, March 1st 1891, 7 (reprint in [44] and inwww. multimagie. com/Francais/Lucas. htm)Google Scholar
  42. [43]
    Edouard Lucas,Theorie des Nombres, Gauthier-Villars, Paris, 1(1891) 129 (reprint by Albert Blanchard, Paris, in 1958 and other years) (reprint by Jacques Gabay, Paris, in 1992)Google Scholar
  43. [44]
    Edouard Lucas, Récréations Mathématiques, Gauthier-Villars, Paris, 4(1894) 226 (reprint by Albert Blanchard, Paris, in 1960 and other years)Google Scholar
  44. [45]
    G. Pfeffermann, Problème 172-Carré magique à deux degrés,Les Tablettes du Chercheur, Paris, Jan 15th 1891, p. 6 and Feb 1st 1891, 8Google Scholar
  45. [46]
    G. Pfeffermann, Problème 1506-Carré magique de 6 à deux degres (imparfait),Les Tablettes du Chercheur, Paris, March 15th 1894, 76, and April 15th 1894, 116Google Scholar
  46. [47]
    Clifford A. Pickover, Updates and Breakthroughs,The Zen of Magic Squares, Circles, and Stars, second printing and first paperback printing, Princeton University Press, Princeton, 2003, 395–401Google Scholar
  47. [48]
    Planck and E. Lieubray, Quelques carrés magiques remarquables,Sphinx, Brussels, 1(1931), 42 and 135Google Scholar
  48. [49]
    Landon W. Rabern, Properties of magic squares of squares,Rose- Hulman Institute of Technology Undergraduate Math Journal 4(2003), N.1Google Scholar
  49. [50]
    Carlos Rivera, Puzzle 79 “The Chebrakov’s Challenge”, Puzzle 287 “Multimagic prime squares,” and Puzzle 288 “Magic square of (prime) squares”,www.primepuzzles.net http://www.primepuzzles.net Google Scholar
  50. [51]
    John P. Robertson, Magic squares of squares,Mathematics Magazine 69(1996), nº4, 289–293CrossRefMATHMathSciNetGoogle Scholar
  51. [52]
    Lee Sallows, The lost theorem,The Mathematical Intelligencer 19(1997), nº4, 51–54CrossRefMATHGoogle Scholar
  52. [53]
    Richard Schroeppel, Item 50,HAKMEM Artificial Intelligence Memo M.I.T 239 (Feb. 29, 1972)Google Scholar
  53. [54]
    Richard Schroeppel, The center cell of a magic 53 is 63 (1976),www. multimagie. com/English/Schroeppel63. htm Google Scholar
  54. [55]
    J.-A. Serret, Demonstration d’un theoreme d’arithmétique, Œuvresde Lagrange, Gauthier-Villars, Paris, 3(1869), 189–201Google Scholar
  55. [56]
    J.-A. Serret and Gaston Darboux, Correspondance de Lagrange avec Euler, Lettre 25, Euler à Lagrange, Saint-Pétersbourg, 9/20 mars 1770, Œuvresde Lagrange, Gauthier-Villars, Paris, 14(1892), 219–224 (reprint in Euleri Opera Omnia,IV-A-5, 477–482)Google Scholar
  56. [57]
    Neil Sloane, Multimagic sequences A052457, A052458, A090037, A090653, A092312,ATT Research’sOnline Encyclopaedia of Integer Sequences, www.research.att.com/~njas/sequences http://www.research.att.com/~njas/sequences Google Scholar
  57. [58]
    Paul Tannery and Charles Henry, Lettre XXXVIIIb bis, Fermat à Mersenne, Toulouse, 1 avril 1640, Œuvresde Fermat, Gauthier-Villars, Paris, 2(1894), pp. 186–194 (partial reprint of the letter atwww.multimagie.com/Francais/Fermat.htm)Google Scholar
  58. [59]
    Gaston Tarry, Le carré trimagique de 128,Compte-Rendu de I’AssociationFrancaise pour I’Avancementdes Sciences, 34ème session Cherbourg (1905), 34–45Google Scholar
  59. [60]
    Walter Trump, Story of the smallest trimagic square, January 2003,www. multimagie. com/English/Tri 12Story.htm Google Scholar
  60. [61]
    R. Venkatachalam Iyer, A six-cell bimagic square,The Mathematics Student 29(1961), 29–31MATHGoogle Scholar
  61. [62]
    Eric Weisstein, Magic figures,MathWorld, http://mathworld. wolfram. com/topics/MagicFigures. html Google Scholar
  62. [63]
    Eric Weisstein, Perfect magic cube,MathWorld, http://mathworld.wolfram.com/PerfectMagicCube.html Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Enghien les BainsFrance

Personalised recommendations