The Mathematical Intelligencer

, Volume 25, Issue 1, pp 22–34 | Cite as

The mathematical knight

Department Mathematical Entertainments


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Ahrens,Mathematische Unterhaltungen und Spiele, Teubner, Leipzig, 1910 (Vol. 1)and 1918 (Vol. 2).Google Scholar
  2. [2]
    E. R. Berlekamp, J. H. Conway, and R. K. Guy,Winning Ways, vol. 2, Academic Press, London/New York, 1982.MATHGoogle Scholar
  3. [3]
    H. E. Dudeney,Amusements in Mathematics, Dover, New York, 1958, 1970 (reprint of Nelson, 1917).Google Scholar
  4. [4]
    N. D. Elkies, On numbers and endgames: Combinatorial game theory in chess endgames, in [22], pp. 135-150.Google Scholar
  5. [5]
    G. Foster, Sliding-block problems, Part 1,The Problemist Supplement 49 (November, 2000), 405–407.Google Scholar
  6. [6]
    G. Foster, Sliding-block problems, Part 2,The Problemist Supplement 51 (March, 2001), 430–432.Google Scholar
  7. [7]
    G. Foster, Sliding-block problems, Part 3,The Problemist Supplement 54 (September, 2001), 454.Google Scholar
  8. [8]
    G. Foster, Sliding-block problems, Part 4,The Problemist Supplement 55 (November, 2001), 463–464.Google Scholar
  9. [9]
    M. Gardner,Mathematical Magic Show, Vintage Books, New York, 1978.Google Scholar
  10. [10]
    J. Gik,Schach und Mathematik, MIR, Moscow, and Urania-Verlag, Leipzig/Jena/ Berlin, 1986; translated from the Russian original published in 1983.Google Scholar
  11. [11]
    B. Hochberg,Chess Braintwisters, Sterling, New York, 1999.Google Scholar
  12. [12]
    D. Hooper and K. Whyld,The Oxford Companion to Chess, Oxford, Oxford University Press, 1984.Google Scholar
  13. [13]
    G. P. Jelliss,Synthetic Games, September 1998, 22 pp.Google Scholar
  14. [14]
    G. P. Jelliss,Knight’s Tour Notes: Knight’s Tours of Four-Rank Boards (Note 4a, 30 November 2001), ktn/4a.htmGoogle Scholar
  15. [15]
    T. Krabbé,Chess Curiosities, George Allen & Unwin Ltd., London, 1985.Google Scholar
  16. [16]
    J. Levitt and D. Friedgood,Secrets of Spectacular Chess, Batsford, London, 1995.Google Scholar
  17. [17]
    C. D. Locock,Manchester Weekly Times, December 28, 1912.Google Scholar
  18. [18]
    S. Loyd,Strategy, 1881.Google Scholar
  19. [19]
    B. McKay, Comments on: Martin Loeb-bing and Ingo Wegener, The Number of Knight’s Tours Equals 33,439,123,484, 294—Counting with Binary Decision Diagrams,Electronic J. Combinatorics, http:// ments/v3ilr5.html.Google Scholar
  20. [20]
    J. Morse,Chess Problems: Tasks andRecords, London, Faber and Faber, 1995; second ed., 2001.Google Scholar
  21. [21]
    I. Newman, problem E 1585 (“What is the maximum number of knights which can be placed on a chessboard in such a way that no knight attacks any other?”), with solutions by R. Patenaude and R. Greenberg,Amer. Math. Monthly 71 no. 2 (Feb. 1964), 210–211.CrossRefMathSciNetGoogle Scholar
  22. [22]
    R. J. Nowakowski, ed.,Games of No Chance, MSRI Publ. #29 (proceedings of the 7/94 MSRI conference on combinatorial games), Cambridge, Cambridge University Press, 1996.Google Scholar
  23. [23]
    N. J. A. Sloane,The On-Line Encyclopedia of Integer Sequences, on the Web at http://www. research Scholar
  24. [24]
    L. Stiller, Multilinear Algebra and Chess Endgames, in [22], pp. 151-192.Google Scholar
  25. [25]
    M. A. Sutherland and H. M. Lommer,1234 Modern End-Game Studies. Dover, New York, 1968.Google Scholar
  26. [26]
    G. Törnberg, “Knight’s Tour”, http://w1. ht.htm.Google Scholar
  27. [27]
    A. C. White,Sam Loyd and His Chess Problems, Whitehead and Miller, 1913; reprinted (with corrections) by Dover, New York, 1962.Google Scholar
  28. [28]
    G. Wilts and A. Frolkin,Shortest Proof Games, Gerd Wilts, Karlsruhe, 1991.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2003

Authors and Affiliations

  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Department of MathematicsMITCambridgeUSA

Personalised recommendations