Annals of Nuclear Medicine

, 19:617

Radiosynthesis andin vivo evaluation of11C-Iabeled 1,5-diarylpyrazole derivatives for mapping cyclooxygenases

  • Yoshihiko Fujisaki
  • Kazunori Kawamura
  • Wei-Fang Wang
  • Kiichi Ishiwata
  • Fumihiko Yamamoto
  • Takashi Kuwano
  • Mayumi Ono
  • Minoru Maeda
Technical Notes

Abstract

We prepared11C-labeled5-(4-chlorophenyl)-l-(4-methoxyphenyl)-3-(trifluoromethyl)-lH-pyrazole ([11C] 1) and 4-[5-(4-methoxyphenyl)-3-trifluoromethyl-lH-pyrazol-1 -yljbenzenesulfonamide ([11C]2) for imaging COX-1 and COX-2 isoforms, respectively, by positron emission tomography. [11C]l and [11C]2 were synthesized in high radiochemical yields byO-[11C]methylation with [11C]methyl triflate in acetone containing an equivalent of NaOH as a base with respect to the phenolic precursors.In vivo evaluation in rats bearing AH109A hepatoma demonstrated minimal specific binding of [11C]1 to COX-1 in peripheral organs, such as the spleen and small intestine. Carrier-saturable uptake of [11C]2 was found in the spleen, but COX-2-specific binding of [101C]2 was not identifiable in the brain, AH109A hepatoma or other peripheral organs, althoughex vivo autoradiography showed regionally different distribution in the brain and AH 109A. The results suggest that neither [11C]1 nor [11C]2 is a suitable radioligand forin vivo biomarkers of COX enzymes, mainly because of marked non-specific binding.

Key words

cyclooxygenase inhibitor carbon-11 radiosynthesis tissue distribution 

References

  1. 1.
    Smith WL, Marnett LJ, Dewitt DL. Prostaglandin and thromboxane biosynthesis.Pharmacol Ther 1991; 49:153–179.PubMedCrossRefGoogle Scholar
  2. 2.
    Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding Prostaglandin synthase is regulated by mRNA splicing.Proc Natl Acad Sci USA 1991; 88: 2692–2696.PubMedCrossRefGoogle Scholar
  3. 3.
    Fu JY, Masferrer JL, Seibert K, Raz A, Needleman P. The induction and suppression of Prostaglandin H2 synthase (cyclooxygenase) in human monocytes.J Biol Chem 1990; 265: 16737–16740.PubMedGoogle Scholar
  4. 4.
    Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR. TIS 10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel Prostaglandin syn-thase/cyclooxygenase homologue.J Biol Chem 1991; 266: 12866–12872.PubMedGoogle Scholar
  5. 5.
    Hla T, Neilson K. Human cyclooxygenase-2 cDNA.Proc Natl Acad Sci USA 1992; 89: 7384–7388.PubMedCrossRefGoogle Scholar
  6. 6.
    Goppelt-Struebe M. Regulation of Prostaglandin endoper-oxide synthase (cyclooxygenase) isozyme expression.Prostaglandins Leukot Essent Fatty Acids 1995; 52: 213–222.PubMedCrossRefGoogle Scholar
  7. 7.
    Futaki N, Takahashi S, Yokoyama M, Arai I, Higuchi S, Otomo S. NS-398, a new anti-inflammatory agent, selectively inhibits Prostaglandin G/H synthase/cyclooxygenase (COX-2) activityin vitro.Prostaglandins 1994; 47: 55–59.PubMedCrossRefGoogle Scholar
  8. 8.
    Copeland RA, Williams JM, Giannaras J, Nurnberg S, Covington M, Pinto D, et al. Mechanism of selective inhibition of the inducible isoform of Prostaglandin G/H synthase.Proc Natl Acad Sci USA 1994; 91: 11202–11206.PubMedCrossRefGoogle Scholar
  9. 9.
    Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain.Proc Natl Acad Sci USA 1994; 91: 12013–12017.PubMedCrossRefGoogle Scholar
  10. 10.
    Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and ad-enocarcinomas.Gastroenterology 1994; 107: 1183–1188.PubMedGoogle Scholar
  11. 11.
    Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer.Cancer Res 1995; 55:3785–3789.PubMedGoogle Scholar
  12. 12.
    Kutchera W, Jones DA, Matsunami N, Groden J, Mclntyre TM, Zimmerman GA, et al. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect.Proc Natl Acad Sci USA 1996; 93: 4816–41820.PubMedCrossRefGoogle Scholar
  13. 13.
    Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristmaki A. Expression of cyclooxygenase-2 in human lung carcinoma.Cancer Res 1998; 58: 4997–5001.PubMedGoogle Scholar
  14. 14.
    Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas.Cancer Res 1998; 58: 3761–3764.PubMedGoogle Scholar
  15. 15.
    Subbaramaiah K, Telang N, Ramonetti JT, Araki R, DeVito B, Weksler BB, et al. Transcription of cyclooxygenase-2 is enhanced in transformed mammary epithelial cells.Cancer Res 1996; 56: 4424–4429.PubMedGoogle Scholar
  16. 16.
    Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment.Trends Pharmacol Sci 2003; 24: 96–102.PubMedCrossRefGoogle Scholar
  17. 17.
    Evans JF, Kargman SL. Cancer and cyclooxygenase-2 (COX-2) inhibition.Curr Pharm Des 2004; 10: 627–634.PubMedCrossRefGoogle Scholar
  18. 18.
    Kaufmann WE, Andreasson KI, Isakson PC, Worley PF. Cyclooxygenases and the central nervous system.Prostaglandins 1997; 54: 601–624.PubMedCrossRefGoogle Scholar
  19. 19.
    Yermakova A, O’Banion MK. Cyclooxygenases in the central nervous system: implications for treatment of neurological disorders.Curr Pharm Des 2000; 6: 1755–1776.PubMedCrossRefGoogle Scholar
  20. 20.
    Kam PCA, See AUL. Cyclo-oxygenase isoenzymes: physiological and pharmacological role.Anaesthesia 2000; 55: 442–449.PubMedCrossRefGoogle Scholar
  21. 21.
    Okamoto T, Hino O. Expression of cyclooxygenase-1 and-2 mRNA in rat tissues: tissue-specific difference in the expression of the basal level of mRNA.Int J Mol Med 2000; 6: 455–457.PubMedGoogle Scholar
  22. 22.
    Yamagata K, Andreasson KI, Kaufman WE, Barnes CA, Worsley PF. Expression of a mitogen-inducible cyclooxygenase in brain neurons.Neuron 1993; 11: 371–386.PubMedCrossRefGoogle Scholar
  23. 23.
    Holtz ML, Kindy MS, Craddock S, Moore RW, Pettigrew LC. Induction of PGH synthase andc-fos mRNA during early reperfusion of ischemic rat brain.Mol Brain Res 1996; 35: 339–343.PubMedCrossRefGoogle Scholar
  24. 24.
    Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-lH-pyrazol-l-yl]benzenesulfonamide (SC-58635, celecoxib).J Med Chem 1997; 40: 1347–1365.PubMedCrossRefGoogle Scholar
  25. 25.
    Prasit P, Wang Z, Brideau C, Chan CC, Charleson S,Cromlish W, et al. The discovery of rofecoxib, [MK 966, VIOXX, 4-(4′-methylsulfonylphenyl)-3-phenyl-2(5H)- furanone], an orally active cyclooxygenase-2 inhibitor.Bioorg Med Chem Lett 1999; 9: 1773–1778.PubMedCrossRefGoogle Scholar
  26. 26.
    McCarthy TJ, Sheriff AU, Graneto MJ, Talley JJ, Welch MJ. Radiosynthesis,in vitro validation, andin vivo evaluation of18F-labeled COX-1 and COX-2 inhibitors.J Nucl Med 2002; 43: 117–124.PubMedGoogle Scholar
  27. 27.
    ae Vries EFJ, van Waarde A, Buursma AR, Vaalburg W. Synthesis andin vivo evaluation of18F-desbromo-Dup-697 as a PET tracer for cyclooxygenase-2 expression.J Nucl Med 2003; 44: 1700–1706.PubMedGoogle Scholar
  28. 28.
    Leblanc Y, Gauthier JY, Ethier D, Guay J, Mancini J, Riendeau D, et al. Synthesis and biological evaluation of 2,3-diarylthiophenes as selective COX-2 and COX-1 inhibitors.Bioorg Med Chem Lett 1995; 5: 2123–2128.CrossRefGoogle Scholar
  29. 29.
    Smith CJ, Zhang Y, Koboldt CM, Muhammad J, Zweifel BS, Shaffer A, et al. Pharmacological analysis of cyclooxygenase-1 in inflammation.Proc Natl Acad Sci USA 1998; 95: 13313–13318.PubMedCrossRefGoogle Scholar
  30. 30.
    Tanaka A, Hase S, Miyazawa T, Takeuchi K. Up-regulation of cyclooxygenase-2 by inhibition of cyclooxygenase-1: a key to nonsteroidal anti-inflammatory drug-induced intestinal damage.J Pharmacol Exp Ther 2002; 300: 754–761.PubMedCrossRefGoogle Scholar
  31. 31.
    Ishiwata K, Kawamura K, Wang WF, Furumoto S, Kubota K, Pascali C, et al. Evaluation of O-[11C]methyl-l-tyrosine and O-[18F]fluoromethyl-l-tyrosine as tumor imaging tracers by PET.Nucl Med Biol 2004; 31: 191–198.PubMedCrossRefGoogle Scholar
  32. 32.
    Ishiwata K, Seki H, Ishii K, Ishii S, Nozaki T, Senda M. Synthesis andin vivo evaluation of [11C]semotiadil, a benzothiazine calcium antagonist.Appl Radiat hot 1994; 45: 439–443.CrossRefGoogle Scholar
  33. 33.
    Kawamura K, Ishiwata K. Improved synthesis of [11C]SA4503, [11C]MPDX and [11CJTMSX by use of [11C]methyl triflate.Ann Nucl Med 2004; 18: 165–168.PubMedCrossRefGoogle Scholar
  34. 34.
    Gierse JK, Hauser SD, Creely DP, Koboldt C, Rangwala SH, Isakson PC, et al. Expression and selective inhibition of the constitutive and inducible forms of human cyclo-oxygenase.Biochem J 1995; 305: 479–484.PubMedGoogle Scholar
  35. 35.
    Hirata A, Hosoi F, Miyagawa M, Ueda S, Naito S, Fujii T, et al. HER2 overexpression increases sensitivity to Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, through inhibition of HER2/HER3 heterodimer formation in lung cancer cells.Cancer Res 2005; 65: 4253–4260.PubMedCrossRefGoogle Scholar
  36. 36.
    Någren K, Halldin C. Methylation of amide and thiol functions with [11C]methyl triflate, as exemplified by [11C]NMSP, [11C]flumazenil and [11C]methionine.J Label Compd Radiopharm 1998; 41: 831–841.CrossRefGoogle Scholar
  37. 37.
    Breder CD, Dewitt D, Kraig RP. Characterization of inducible cyclooxygenase in rat brain.J Comp Neurol 1995; 355: 296–315.PubMedCrossRefGoogle Scholar
  38. 38.
    Paulson SK, Kaprak TA, Gresk CJ, Fast DM, Baratta MT, Burton EG, et al. Plasma protein binding of celecoxib in mice, rat, rabbit, dog and human.Biopharm Drug Dispos 1999; 20: 293–299.PubMedCrossRefGoogle Scholar
  39. 39.
    Clark DE.In silico prediction of blood-brain barrier permeation.Drug Discov Today 2003; 8: 927–933.PubMedCrossRefGoogle Scholar
  40. 40.
    Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents.Nature 1996; 384: 644–648.PubMedCrossRefGoogle Scholar
  41. 41.
    Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, et al. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition.J Med Chem 2004; 47: 550–557.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Yoshihiko Fujisaki
    • 1
  • Kazunori Kawamura
    • 2
  • Wei-Fang Wang
    • 2
  • Kiichi Ishiwata
    • 2
  • Fumihiko Yamamoto
    • 1
  • Takashi Kuwano
    • 3
  • Mayumi Ono
    • 3
  • Minoru Maeda
    • 1
  1. 1.Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
  2. 2.Positron Medical CenterTokyo Metropolitan Institute of GerontologyJapan
  3. 3.Graduate School of Medical SciencesKyushu UniversityJapan

Personalised recommendations