The Mathematical Intelligencer

, Volume 25, Issue 3, pp 33–40

The card game set

Mathematical Entertainments

Abstract

This column is a place for those bits of contagious mathematics that travel from person to person in the community, because they are so elegant, suprising, or appealing that one has an urge to pass them on.

Contributions are most welcome.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bierbrauer and Y. Edel. Bounds on affine caps.J. Combin. Des., 10(2):111–115, 2002.CrossRefMathSciNetGoogle Scholar
  2. [2]
    R. C. Bose. Mathematical theory of the symmetrical factorial design.Sankhyā, 8: 107–166, 1947.MATHGoogle Scholar
  3. [3]
    A. R. Calderbank and P. C. Fishburn. Maximal three-independent subsets of {0,1, 2}n.Des. Codes Cryptogr., 4(3):203–211, 1994.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    C. J. Colbourn and A. Rosa.Triple systems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1999.Google Scholar
  5. [5]
    Y. Edel. Extensions of generalized product caps. Preprint available from http://www. mathi.uni-heidelberg.de/~yves/.Google Scholar
  6. [6]
    Y. Edel, S. Ferret, I. Landjev, and L. Storme. The classification of the largest caps inAG(5, 3).Journal of Combinatorial Theory, Series A, 99:95–110, 2002.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    W. Fulton and J. Harris.Representation theory, A first course. Readings in Mathematics. Springer-Verlag, New York, 1991.Google Scholar
  8. [8]
    H. T. Hall. Personal communication.Google Scholar
  9. [9]
    M. Hall, {jrJr.} Automorphisms of Steiner triple systems.IBM J. Res. Develop, 4:460–472, 1960.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    M. Hall, {jrJr.} Steiner triple systems with a doubly transitive automorphism group.J. Combin. Theory Ser. A, 38(2): 192–202, 1985.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    R. Hill. On the largest size of cap in S5,3.Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (8), 54:378–384 (1974), 1973.MATHGoogle Scholar
  12. [12]
    R. Hill. Caps and codes.Discrete Math., 22(2):111–137, 1978.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    R. Hill. On Pellegrino’s 20-caps in S4,3. InCombinatorics ‘81 (Rome, 1981), pages 433–447. North-Holland, Amsterdam, 1983.Google Scholar
  14. [14]
    R. Hill.A first course in coding theory. The Clarendon Press Oxford University Press, New York, 1986.MATHGoogle Scholar
  15. [15]
    W. M. Kantor. Homogeneous designs and geometric lattices.J. Combin. Theory Ser. A, 38(1):66–74, 1985.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    J. D. Key and E. E. Shult. Steiner triple systems with doubly transitive automorphism groups: a corollary to the classification theorem for finite simple groups.J. Combin. Theory Ser. A, 36(1 ):105–110, 1984.CrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    D. Knuth. Programs setset, setset-all, set- set-random. Available from http://sunburn. stanford.edu/~knuth/programs.html.Google Scholar
  18. [18]
    Roy Meshulam. On subsets of finite abelian groups with no 3-term arithmetic progressions.J. Combin. Theory Ser. A, 71(1):168–172, 1995.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    G. Pellegrino. Sul massimo ordine delle calotte in S3,4.Matematiche (Catania), 25:149–157 (1971), 1970.MATHMathSciNetGoogle Scholar
  20. [20]
    J. H. van Lint and R. M. Wilson.A course in combinatorics. Cambridge University Press, Cambridge, second edition, 2001.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Mathematics, and Computer ScienceSaint Mary’s CollegeMoragaUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations