The Mathematical Intelligencer

, Volume 25, Issue 2, pp 20–23 | Cite as

What this country needs is an 18c piece

Department Mathematical Entertainments


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Delange. Sur la fonction sommatoire de la fonction “somme des chiffres.”Enseign. Math. 21 (1975), 31–47.MATHMathSciNetGoogle Scholar
  2. [2]
    R. K. Guy.Unsolved Problems in Number Theory. Springer-Verlag, 2nd edition, 1994.Google Scholar
  3. [3]
    R. Kannan. Lattice translates of a polytope and the Frobenius problem.Combinatorics 12(1992), 161–177.CrossRefMATHGoogle Scholar
  4. [4]
    D. Kozen. and S. Zaks. Optimal bounds for the change-making problem.Theoret. Comput. Sci. 123 (1994), 377–388.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    G. S. Lueker. Two NP-complete problems in nonnegative integer programming. Technical Report TR-178, Computer Science Laboratory, Department of Electrical Engineering, Princeton University, March 1975.Google Scholar
  6. [6]
    D. Pearson. A polynomial-time algorithm for the change-making problem. Technical Report TR 94–1433, Department of Computer Science, Cornell University, June 1994. Available from com/pearson94polynomialtime. html.Google Scholar
  7. [7]
    R. A. Raimi. The first digit problem.Amer. Math. Monthly 83 (1976), 521–538.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    J. L. Ramirez-Alfonsin. Complexity of the Frobenius problem.Combinatorica 16 (1996), 143–147.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    J. Shallit. The computational complexity of the local postage stamp problem.SIGACT News 33(1) (2002), 90–94.CrossRefGoogle Scholar
  10. [10]
    J. W. Wright. The change-making problem.J. Assoc. Comput. Mach. 22 (1975), 125–128.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations