The Mathematical Intelligencer

, Volume 25, Issue 2, pp 20–23 | Cite as

What this country needs is an 18c piece

  • Jeffrey Shallit
Department Mathematical Entertainments


Optimal Representation Greedy Algorithm Average Cost Greedy Method Turing Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Delange. Sur la fonction sommatoire de la fonction “somme des chiffres.”Enseign. Math. 21 (1975), 31–47.zbMATHMathSciNetGoogle Scholar
  2. [2]
    R. K. Guy.Unsolved Problems in Number Theory. Springer-Verlag, 2nd edition, 1994.Google Scholar
  3. [3]
    R. Kannan. Lattice translates of a polytope and the Frobenius problem.Combinatorics 12(1992), 161–177.CrossRefzbMATHGoogle Scholar
  4. [4]
    D. Kozen. and S. Zaks. Optimal bounds for the change-making problem.Theoret. Comput. Sci. 123 (1994), 377–388.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    G. S. Lueker. Two NP-complete problems in nonnegative integer programming. Technical Report TR-178, Computer Science Laboratory, Department of Electrical Engineering, Princeton University, March 1975.Google Scholar
  6. [6]
    D. Pearson. A polynomial-time algorithm for the change-making problem. Technical Report TR 94–1433, Department of Computer Science, Cornell University, June 1994. Available from com/pearson94polynomialtime. html.Google Scholar
  7. [7]
    R. A. Raimi. The first digit problem.Amer. Math. Monthly 83 (1976), 521–538.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    J. L. Ramirez-Alfonsin. Complexity of the Frobenius problem.Combinatorica 16 (1996), 143–147.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    J. Shallit. The computational complexity of the local postage stamp problem.SIGACT News 33(1) (2002), 90–94.CrossRefGoogle Scholar
  10. [10]
    J. W. Wright. The change-making problem.J. Assoc. Comput. Mach. 22 (1975), 125–128.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations