The Mathematical Intelligencer

, Volume 29, Issue 1, pp 37–44 | Cite as

Sudoku’s french ancestors

Article

Abstract

This column is a place for those bits of contagious mathematics that travel from person to person in the community, because they are so elegant, suprising, or appealing that one has an urge to pass them on.

Contributions are most welcome.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Christian Boyer, Les premiers carrés tétra et pentamagiques,Pour La Science, N°286, August 2001, 98-102Google Scholar
  2. [2]
    Christian Boyer, Some notes on the magic squares of squares problem,The Mathematical Intelligencer,27(Spring 2005), 52–64CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    Christian Boyer, Letter—Magic squares,Mathematics Today,42(April 2006), 70Google Scholar
  4. [4]
    Christian Boyer, Les ancêtres français du Sudoku,Pour La Science, N°344, June 2006, 8-11 & 89Google Scholar
  5. [5]
    Christian Boyer, Multimagic squares web site, with some Sudoku pages, www. multimagie.com/indexengl.htmGoogle Scholar
  6. [6]
    Général Cázalas,Carrés Magiques au degré n, Hermann, Paris, 1934Google Scholar
  7. [7]
    Jean-Paul Delahaye, Le tsunami du Sudoku,Pour La Science, N°38, December 2005, 144-149Google Scholar
  8. [8]
    Jean-Paul Delahaye, The science behind Sudoku,Scientific American, 294(June 2006), 70–77Google Scholar
  9. [9]
    Leonhard Euler, Recherches sur une nouvelle espèce de quarrés magiques,Verhandelingen uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen,9(1782), 85–239 (reprint in EulerOpera Omnia 1-7, (291–392)Google Scholar
  10. [10]
    Brian Hayes, Unwed numbers,American Scientist,94(January–February 2006), 12–15CrossRefGoogle Scholar
  11. [11]
    G. Pfeffermann, Problème 172-Carré magique á deux degrés,Les Tablettes du Chercheur, Paris, Jan 15th 1891, 6, and Feb 1st 1891, 8.Google Scholar
  12. [12]
    George Pólya, Über die doppelt-periodischen Lösungen des n-Damen-Problems, in W. Ahrens,Mathematisch Unterhaltungen und Spiele, Vol.2, 2nd edition, Berlin, 1918, 364–374Google Scholar
  13. [13]
    Gaston Tarry, Le problème des 36 officiers,Comptes-Rendus de l’Association Française pour ľAvancement des Sciences, Congrès de Paris 1900, 170-204Google Scholar
  14. [14]
    Gaston Tarry, Sur un carré magique,Comptes-Rendus Hebdomadaires des Séances de I’Académie des Sciences, Paris,142(1906), 757–760Google Scholar

Copyright information

© Springer science + business media, inc 2007

Authors and Affiliations

  1. 1.Enghien les BainsFrance

Personalised recommendations