Journal of Genetics

, Volume 56, Issue 2, pp 143–155 | Cite as

Effect of triploidy on the body size, general organization and cellular structure inGasterosteus aculeatus (L)

  • H. Swarup
Article

Summary

1. In experimentally produced triploidGasterosteus aculeatus, the body size is similar to that of the normal diploid forms, but the proportions of the trunk and tail to the body size are different. In triploids the trunk is proportionately shorter and the tail longer than in the diploid controls.

2. In the triploids, the nucleus and the cell size in cartilage, blood and nerve cells etc. are much larger and approximately bear a ratio of 3:2 to those of the corresponding cells in the diploid individuals.

3. The different organs like brain, retina, occipital arch, pronephric ducts etc., remain of the same size in both the triploids and the diploids; however, the number of cells in the triploid organs is less than those of the diploid.

4. In the triploid forms, the increase in size of the cells is compensated by a corresponding decrease in the number of cells, because in both the cases the size of the different organs remains more or less the same.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artom, C. (1925). Gigantismo e costituzioni genetiche nelle razze e nelle specie tetraploidi.Riv. Biol.,7, 533–555.Google Scholar
  2. Artom, C. (1928). La polyploidie dans ses corrélations morphologiques et biologiques.C.R. Soc. Biol., Paris.,99, 29–49.Google Scholar
  3. Beatty, R. A. andFischberg, M. (1951). Cell number in haploid, diploid and polyploid mouse embryos.J. Exp. Biol.,28, 541–552.Google Scholar
  4. Darlington, C. D. (1937). Recent advances in Cytology. (2nd edition). Philadelphia.Google Scholar
  5. Fankhauser, G. (1941). Cell size, organ and body size in triploid newts (Triturus viridescens).J. Morph.68, 161–177.CrossRefGoogle Scholar
  6. Fankhauser, G. (1945a). The effects of changes in chromosome number on amphibian development.Quart. Rev. Biol.,20, 20–78.CrossRefGoogle Scholar
  7. Fankhauser, G. (1945b). Maintenance of normal structure in heteroploid salamander larvae, through compensation of changes in cell size by adjustment of cell number and cell shape.J. Exp. Zool.,100, 445–455.CrossRefGoogle Scholar
  8. Fankhauser, G. andWatson, R. C. (1949). The effect of pituitary implantation on diploid and triploid larvae of the newt,Triturus viridescens, with special reference to the gonads.J. Exp. Zool.,111, 349–392.PubMedCrossRefGoogle Scholar
  9. Fischberg, M. (1944). Veränderungen der Chromosomenzahl beiTriton alpestris nach Kältebehandlung der Eier.Rev. Suisse Zool.,51, 430–436.Google Scholar
  10. Fischberg, M. (1948b). Bestehen in der Ausbildung der Artmerkmale Unterschiede zwischen denTriton palmatus ♀ undTriton alpestris ♂?Rev. Suisse Zool.,55, 304–310.Google Scholar
  11. Heilborn, O. (1934). On the origin and preservation of polyploidy.Hereditas.,19, 233–242.CrossRefGoogle Scholar
  12. Inaba, F. (1939). Diploid males and triploid females of the parasitic wasp,Habrobracon pectinophorae Watanabe.Cytologia,9, 517–523.Google Scholar
  13. Kawaguchi, E. (1936). Der Einfluss der Eierbehandlung mit Zentrifugierung auf die Vererbung bei dem Seidenspinner. I. Uber experimentelle Auslösung der polyploiden Mutation.J. Fac. Agric. Hokkaido Univ.,38, 111–133.Google Scholar
  14. Kawamura, T. (1941a). Polyploidy in the Japanese newt,Triturus pyrrhogaster.Zool. Mag. (Tokyo),53, 550–552.Google Scholar
  15. Kawamura, T. (1941b). III. Triploid frogs developed from fertilized eggs.Proc. Imp. Acad. Japan,17, 523–526.Google Scholar
  16. Morgan, L. V. (1925). Polyploidy inDrosophila melanogaster with two attached chromosomes.Genetics,10, 148–178.PubMedGoogle Scholar
  17. Muntzing, A. (1936). The evolutionary significance of autopolyploidy.Hereditas21, 263–378.Google Scholar
  18. Seiler, J. (1938). Ergebnisse aus der Kreuzung einer diploid-parthenogenetischenSolenobia triquetrella mit Männchen einer bisexuellen Rasse.Rev. Suisse Zool.,45, 405–412.Google Scholar
  19. Swarup, H. (1956). Production of Heteroploidy in the Three-Spined SticklebackGasterosteus aculeatus (L).Nature, Lond.,178, 1124–1125.CrossRefGoogle Scholar
  20. Torvik, M. M. (1931). Genetic evidence for diploidism of biparental males inHabrobracon.Biol. Bull.,61, 139–156.CrossRefGoogle Scholar
  21. Vandel, A. (1928). La parthenogénèse géographique.Bull. Biol.,62, 164–281.Google Scholar
  22. Wettstein, F. von. (1927). Die Erscheinung der Heteroploidie, besonders im Pflanzenreich.Ergebn. Biol.,2, 311–356.Google Scholar
  23. Wettstein, F. von. (1937). Experimentelle Untersuchungen Zum Artbildungsproblem. I. Zellgrossenregulation und Fertilwerden einer polyploiden Bryum-Sippe.Z. ind. Abst. Ver. (lehre),74, 34–53.CrossRefGoogle Scholar
  24. Whiting, A. R. (1928). Genetic evidence for diploid males in Habrobracon?Biol. Bull.,53, 438–449.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1959

Authors and Affiliations

  • H. Swarup
    • 1
  1. 1.From the Department of Zoology and Comparative AnatomyUniversity MuseumOxford

Personalised recommendations