Advertisement

The Mathematical Intelligencer

, Volume 28, Issue 4, pp 34–38 | Cite as

Mono-monostatic bodies

The answer to Arnold’s question
  • P. L. Várkonyi
  • G. Domokos
Article

Keywords

Static Body Convex Body Mathematical Intelligencer Unstable Equilibrium Polyhedral Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Domokos, J. Papadopoulos, A. Ruina: Static equilibria of planar, rigid bodies: is there anything new?J. Elasticity 36 (1994), 59–66.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    M. Berger, B. Gostiaux:Differential geometry: Manifolds, curves and surfaces. Springer, New York (1988).CrossRefGoogle Scholar
  3. 3.
    Conway, J. H. and Guy, R.: Stability of polyhedra,SIAM Rev. 11 (1969), 78–82.CrossRefGoogle Scholar
  4. 4.
    Dawson, R.: Monostatic simplexes,Amer. Math. Monthly 92 (1985), 541–646.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dawson, R. and Finbow, W.: What shape is a loaded die?Mathematical Intelligencer 22 (1999), 32–37.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Heppes, A.: A double-tipping tetrahedron,SIAM Rev. 9 (1967), 599–600.CrossRefGoogle Scholar
  7. 7.
    Várkonyi, P. L. and Domokos G.: Static equilibria of rigid bodies: dice, pebbles and the Poincaré-Hopf Theorem.J. Nonlinear Science 16 (2006), 251–283.CrossRefGoogle Scholar
  8. 8.
    Arnold, V. I.: Ordinary Differential Equations, 10th printing, 1998. MIT Press.Google Scholar
  9. 9.
    Freedberg, S.et al.: Developmental environment has long-lasting effects on behavioral performance in two turtles with environmental sex determination,Evolutionary Ecology Res. 6 (2004), 739–747.Google Scholar
  10. 10.
    Steyermark A. C, Spotila, J. R.: Body temperature and maternal identity affect snapping turtle(Chelydra serpentina) righting response,COPEIA 4 (2001), 1050–1057.CrossRefGoogle Scholar
  11. 11.
    Arnold, V. I.:Arnold’s problems. Springer, Berlin-Heidelberg-New York & PHASIS, Moscow, 2005.CrossRefGoogle Scholar
  12. 12.
    Tabachnikov, S.: Review ofArnold’s problems, The Mathematical Intelligencer, to appear.Google Scholar

Copyright information

© Springer Science+Business Media, Inc., 2006

Authors and Affiliations

  1. 1.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of Mechanics, Materials,and StructuresBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations