PET kinetic analysis—compartmental model
Review
Received:
Accepted:
- 639 Downloads
- 87 Citations
Abstract
PET enables not only visualization of the distribution of radiotracer, but also has ability to quantify several biomedical functions. Compartmental model is a basic idea to analyze dynamic PET data. This review describes the principle of the compartmental model and categorizes the techniques and approaches for the compartmental model according to various aspects: model design, experimental design, invasiveness, and mathematical solution. We also discussed advanced applications of the compartmental analysis with PET.
Key words
PET compartmental model pharmacokineticsReferences
- 1.Luker G, Piwnica-Worms D. Molecular imagingin vivo with PET and SPECT.Acad Radiol November 2001; 8: 4–14.CrossRefGoogle Scholar
- 2.Dobrucki L, Sinusas A. Molecular imaging. A new approach to nuclear cardiology.Q J Nucl Med Mol Imaging 2005; 49(1): 106–115.PubMedGoogle Scholar
- 3.Weissleder R. Molecular imaging in cancer.Science 2006; 312(5777): 1168–1171.PubMedCrossRefGoogle Scholar
- 4.Kety S. The theory and applications of the exchange of inert gas at the lungs and tissues.Pharmacol Rev 1951; 3: 3–41.Google Scholar
- 5.Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man.Circ Res 1979; 44(1): 127–137.PubMedGoogle Scholar
- 6.Mintun M, Raichle M, Martin W, Herscovitch P. Brain oxygen utilization measured with O–15 radiotracers and positron emission tomography.J Nucl Med 1984; 25(2): 177–187.PubMedGoogle Scholar
- 7.Mintun M, Raichle M, Kilbourn M, Wooten G, Welch M. A quantitative model for thein vivo assessment of drug binding sites with positron emission tomography.Ann Neurol 1984; 15(3): 217–227.PubMedCrossRefGoogle Scholar
- 8.Eriksson L, Holte S, Bohm C, Kesselberg M, Hovander B. Automated blood sampling systems for positron emission tomography.IEEE Nucl Sci 1988; 35(1): 703–707.CrossRefGoogle Scholar
- 9.Kudomi N, Choi E, Yamamoto S, Watabe H, Kim K, Shidahara M, et al. Development of a GSO detector assembly for a continuous blood sampling system.IEEE Trans Nucl Sci 2003; 50(1): 70–73.CrossRefGoogle Scholar
- 10.Koeppe R, Holthoff V, Frey K, Kilbourn M, Kuhl D. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography.J Cereb Blood Flow Metab 1991; 11(5): 735–744.PubMedGoogle Scholar
- 11.Watabe H, Channing M, Der M, Adams H, Jagoda E, Herscovitch P, et al. Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907.J Cereb Blood Flow Metab 2000; 20(6): 899–909.PubMedCrossRefGoogle Scholar
- 12.Endres C, Endres C, DeJesus O, DeJesus O, Uno H, Uno H, et al. Time profile of cerebral [18F]6-fluoro-L-DOPA metabolites in nonhuman primate: implications for the kinetics of therapeutic l-DOPA.Front Biosci 2004; 9: 505–512.PubMedCrossRefGoogle Scholar
- 13.Patlak C, Blasberg R. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations.J Cereb Blood Flow Metab 1985; 5(4): 584–590.PubMedGoogle Scholar
- 14.Logan J, Fowler J, Volkow N, Wolf A, Dewey S, Schlyer D, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied toN-[11C]methyl-(-)-cocaine PET studies in human subjects.J Cereb Blood Flow Metab 1990; 10(5): 740–747.PubMedGoogle Scholar
- 15.Cunningham V, Jones T. Spectral analysis of dynamic PET studies.J Cereb Blood Flow Metab 1993; 13(1): 15–23.PubMedGoogle Scholar
- 16.Murase K. Spectral analysis: principle and clinical applications.Ann Nucl Med 2003; 17(6): 427–434.PubMedGoogle Scholar
- 17.Gunn R, Gunn S, Turkheimer F, Aston J, Cunningham V. Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling.J Cereb Blood Flow Metab 2002; 22(12): 1425–1439.PubMedCrossRefGoogle Scholar
- 18.Lammertsma A, Jones T, Frackowiak R, Lenzi G. A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15.J Comput Assist Tomogr 1981; 5(4): 544–550.PubMedCrossRefGoogle Scholar
- 19.Carson R, Channing M, Blasberg R, Dunn B, Cohen R, Rice K, et al. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography.J Cereb Blood Flow Metab 1993; 13(1): 24–42.PubMedGoogle Scholar
- 20.Watabe H, Endres C, Breier A, Schmall B, Eckelman W, Carson R. Measurement of dopamine release with continuous infusion of [11C]raclopride: optimization and signal-to-noise considerations.J Nucl Med 2000; 41(3): 522–530.PubMedGoogle Scholar
- 21.Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect.Circulation 1988; 78(1): 104–115.PubMedGoogle Scholar
- 22.Choi Y, Huang S, Hawkins R, Kim J, Kim B, Hoh C, et al. Quantification of myocardial blood flow using13N-ammonia and PET: comparison of tracer models.J Nucl Med 1999; 40(6): 1045–1055.PubMedGoogle Scholar
- 23.Watabe H, Channing M, Riddell C, Jousse F, Libutti S, Carrasquillo J, et al. Noninvasive estimation of the aorta input function for measurement of tumor blood flow with [15O]water.IEEE Trans Med Imaging 2001; 20(3): 164–174.PubMedCrossRefGoogle Scholar
- 24.Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis.IEEE Trans Biomed Eng 2005; 52(2): 201–210.PubMedCrossRefGoogle Scholar
- 25.Watabe H, Itoh M, Cunningham V, Lammertsma A, Bloomfield P, Mejia M, et al. Noninvasive quantification of rCBF using positron emission tomography.J Cereb Blood Flow Metab 1996; 16(2): 311–319.PubMedCrossRefGoogle Scholar
- 26.Bella ED, Clackdoyle R, Gullberg G. Blind estimation of compartmental model parameters.Phys Med Biol 1999; 44(3): 765–780.PubMedCrossRefGoogle Scholar
- 27.Lammertsma A, Bench C, Hume S, Osman S, Gunn K, Brooks D, et al. Comparison of methods for analysis of clinical [11C]raclopride studies.J Cereb Blood Flow Metab 1996; 16(1): 42–52.PubMedCrossRefGoogle Scholar
- 28.Lammertsma A, Hume S. Simplified reference tissue model for PET receptor studies.Neuroimage 1996; 4 (3 Pt 1): 153–158.PubMedCrossRefGoogle Scholar
- 29.Endres C, Bencherif B, Hilton J, Madar I, Frost J. Quantification of brain muopioid receptors with [11C]carfentanil: reference-tissue methods.Nucl Med Biol 2003; 30(2): 177–186.PubMedCrossRefGoogle Scholar
- 30.Kropholler MA, Boellaard R, Schuitemaker A, Folkersma H, Berckel BNMV, Lammertsma AA. Evaluation of reference tissue models for the analysis of [11C](R)-PK11195 studies.J Cereb Blood Flow Metab 2006.Google Scholar
- 31.Yokoi T, Iida H, Itoh H, Kanno I. A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET.J Nucl Med 1993; 34(3): 498–505.PubMedGoogle Scholar
- 32.Ichise M, Toyama H, Innis R, Carson R. Strategies to improve neuroreceptor parameter estimation by linear regression analysis.J Cereb Blood Flow Metab 2002; 22(10):1271–1281.PubMedCrossRefGoogle Scholar
- 33.Slifstein M, Lamelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies.J Nucl Med 2000; 41(12): 2083–2088.PubMedGoogle Scholar
- 34.Gunn R, Lammertsma A, Hume S, Cunningham V. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model.Neuroimage 1997; 6(4):279–287.PubMedCrossRefGoogle Scholar
- 35.Watabe H, Watabe H, Jino H, Jino H, Kawachi N, Kawachi N, et al. Parametric imaging of myocardial blood flow with15O-water and PET using the basis function method.J Nucl Med 2005; 46(7): 1219–1224.PubMedGoogle Scholar
- 36.Breier A, Su T, Saunders R, Carson R, Kolachana B, Bartolomeis de A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method.Proc Natl Acad Sci USA 1997; 94(6): 2569–2574.PubMedCrossRefGoogle Scholar
- 37.Endres C, Kolachana B, Saunders R, Su T, Weinberger D, Breier A, et al. Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies.J Cereb Blood Flow Metab 1997; 17(9): 932–942.PubMedCrossRefGoogle Scholar
- 38.Koeppe R, Raffel D, Snyder S, Ficaro E, Kilboum M, Kuhl D. Dual-[11C]tracer single-acquisition positron emission tomography studies.J Cereb Blood Flow Metab 2001; 21 (12): 1480–1492.PubMedCrossRefGoogle Scholar
- 39.Kudomi N, Hayashi T, Teramoto N, Watabe H, Kawachi N, Ohta Y, et al. Rapid quantitative measurement of CMRO2 and CBF by dual administration of15O-labeled oxygen and water during a single PET scan—a validation study and error analysis in anesthetized monkeys.J Cereb Blood Flow Metab 2005; 25: 1209–1224.PubMedCrossRefGoogle Scholar
- 40.Green L, Nguyen K, Berenji B, Iyer M, Bauer E, Barrio J, et al. A tracer kinetic model for18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET.J Nucl Med 2004; 45(9): 1560–1570.PubMedGoogle Scholar
- 41.Richard J, Zhou Z, Chen D, Mintun M, Piwnica-Worms D, Factor P, et al. Quantitation of pulmonary transgene expression with PET imaging.J Nucl Med 2004; 45(4): 644–654.PubMedGoogle Scholar
Copyright information
© Springer 2006