Annals of Nuclear Medicine

, 20:583 | Cite as

PET kinetic analysis—compartmental model

  • Hiroshi Watabe
  • Yoko Ikoma
  • Yuichi Kimura
  • Mika Naganawa
  • Miho Shidahara


PET enables not only visualization of the distribution of radiotracer, but also has ability to quantify several biomedical functions. Compartmental model is a basic idea to analyze dynamic PET data. This review describes the principle of the compartmental model and categorizes the techniques and approaches for the compartmental model according to various aspects: model design, experimental design, invasiveness, and mathematical solution. We also discussed advanced applications of the compartmental analysis with PET.

Key words

PET compartmental model pharmacokinetics 


  1. 1.
    Luker G, Piwnica-Worms D. Molecular imagingin vivo with PET and SPECT.Acad Radiol November 2001; 8: 4–14.CrossRefGoogle Scholar
  2. 2.
    Dobrucki L, Sinusas A. Molecular imaging. A new approach to nuclear cardiology.Q J Nucl Med Mol Imaging 2005; 49(1): 106–115.PubMedGoogle Scholar
  3. 3.
    Weissleder R. Molecular imaging in cancer.Science 2006; 312(5777): 1168–1171.PubMedCrossRefGoogle Scholar
  4. 4.
    Kety S. The theory and applications of the exchange of inert gas at the lungs and tissues.Pharmacol Rev 1951; 3: 3–41.Google Scholar
  5. 5.
    Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man.Circ Res 1979; 44(1): 127–137.PubMedGoogle Scholar
  6. 6.
    Mintun M, Raichle M, Martin W, Herscovitch P. Brain oxygen utilization measured with O–15 radiotracers and positron emission tomography.J Nucl Med 1984; 25(2): 177–187.PubMedGoogle Scholar
  7. 7.
    Mintun M, Raichle M, Kilbourn M, Wooten G, Welch M. A quantitative model for thein vivo assessment of drug binding sites with positron emission tomography.Ann Neurol 1984; 15(3): 217–227.PubMedCrossRefGoogle Scholar
  8. 8.
    Eriksson L, Holte S, Bohm C, Kesselberg M, Hovander B. Automated blood sampling systems for positron emission tomography.IEEE Nucl Sci 1988; 35(1): 703–707.CrossRefGoogle Scholar
  9. 9.
    Kudomi N, Choi E, Yamamoto S, Watabe H, Kim K, Shidahara M, et al. Development of a GSO detector assembly for a continuous blood sampling system.IEEE Trans Nucl Sci 2003; 50(1): 70–73.CrossRefGoogle Scholar
  10. 10.
    Koeppe R, Holthoff V, Frey K, Kilbourn M, Kuhl D. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography.J Cereb Blood Flow Metab 1991; 11(5): 735–744.PubMedGoogle Scholar
  11. 11.
    Watabe H, Channing M, Der M, Adams H, Jagoda E, Herscovitch P, et al. Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907.J Cereb Blood Flow Metab 2000; 20(6): 899–909.PubMedCrossRefGoogle Scholar
  12. 12.
    Endres C, Endres C, DeJesus O, DeJesus O, Uno H, Uno H, et al. Time profile of cerebral [18F]6-fluoro-L-DOPA metabolites in nonhuman primate: implications for the kinetics of therapeutic l-DOPA.Front Biosci 2004; 9: 505–512.PubMedCrossRefGoogle Scholar
  13. 13.
    Patlak C, Blasberg R. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations.J Cereb Blood Flow Metab 1985; 5(4): 584–590.PubMedGoogle Scholar
  14. 14.
    Logan J, Fowler J, Volkow N, Wolf A, Dewey S, Schlyer D, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied toN-[11C]methyl-(-)-cocaine PET studies in human subjects.J Cereb Blood Flow Metab 1990; 10(5): 740–747.PubMedGoogle Scholar
  15. 15.
    Cunningham V, Jones T. Spectral analysis of dynamic PET studies.J Cereb Blood Flow Metab 1993; 13(1): 15–23.PubMedGoogle Scholar
  16. 16.
    Murase K. Spectral analysis: principle and clinical applications.Ann Nucl Med 2003; 17(6): 427–434.PubMedGoogle Scholar
  17. 17.
    Gunn R, Gunn S, Turkheimer F, Aston J, Cunningham V. Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling.J Cereb Blood Flow Metab 2002; 22(12): 1425–1439.PubMedCrossRefGoogle Scholar
  18. 18.
    Lammertsma A, Jones T, Frackowiak R, Lenzi G. A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15.J Comput Assist Tomogr 1981; 5(4): 544–550.PubMedCrossRefGoogle Scholar
  19. 19.
    Carson R, Channing M, Blasberg R, Dunn B, Cohen R, Rice K, et al. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography.J Cereb Blood Flow Metab 1993; 13(1): 24–42.PubMedGoogle Scholar
  20. 20.
    Watabe H, Endres C, Breier A, Schmall B, Eckelman W, Carson R. Measurement of dopamine release with continuous infusion of [11C]raclopride: optimization and signal-to-noise considerations.J Nucl Med 2000; 41(3): 522–530.PubMedGoogle Scholar
  21. 21.
    Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect.Circulation 1988; 78(1): 104–115.PubMedGoogle Scholar
  22. 22.
    Choi Y, Huang S, Hawkins R, Kim J, Kim B, Hoh C, et al. Quantification of myocardial blood flow using13N-ammonia and PET: comparison of tracer models.J Nucl Med 1999; 40(6): 1045–1055.PubMedGoogle Scholar
  23. 23.
    Watabe H, Channing M, Riddell C, Jousse F, Libutti S, Carrasquillo J, et al. Noninvasive estimation of the aorta input function for measurement of tumor blood flow with [15O]water.IEEE Trans Med Imaging 2001; 20(3): 164–174.PubMedCrossRefGoogle Scholar
  24. 24.
    Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis.IEEE Trans Biomed Eng 2005; 52(2): 201–210.PubMedCrossRefGoogle Scholar
  25. 25.
    Watabe H, Itoh M, Cunningham V, Lammertsma A, Bloomfield P, Mejia M, et al. Noninvasive quantification of rCBF using positron emission tomography.J Cereb Blood Flow Metab 1996; 16(2): 311–319.PubMedCrossRefGoogle Scholar
  26. 26.
    Bella ED, Clackdoyle R, Gullberg G. Blind estimation of compartmental model parameters.Phys Med Biol 1999; 44(3): 765–780.PubMedCrossRefGoogle Scholar
  27. 27.
    Lammertsma A, Bench C, Hume S, Osman S, Gunn K, Brooks D, et al. Comparison of methods for analysis of clinical [11C]raclopride studies.J Cereb Blood Flow Metab 1996; 16(1): 42–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Lammertsma A, Hume S. Simplified reference tissue model for PET receptor studies.Neuroimage 1996; 4 (3 Pt 1): 153–158.PubMedCrossRefGoogle Scholar
  29. 29.
    Endres C, Bencherif B, Hilton J, Madar I, Frost J. Quantification of brain muopioid receptors with [11C]carfentanil: reference-tissue methods.Nucl Med Biol 2003; 30(2): 177–186.PubMedCrossRefGoogle Scholar
  30. 30.
    Kropholler MA, Boellaard R, Schuitemaker A, Folkersma H, Berckel BNMV, Lammertsma AA. Evaluation of reference tissue models for the analysis of [11C](R)-PK11195 studies.J Cereb Blood Flow Metab 2006.Google Scholar
  31. 31.
    Yokoi T, Iida H, Itoh H, Kanno I. A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET.J Nucl Med 1993; 34(3): 498–505.PubMedGoogle Scholar
  32. 32.
    Ichise M, Toyama H, Innis R, Carson R. Strategies to improve neuroreceptor parameter estimation by linear regression analysis.J Cereb Blood Flow Metab 2002; 22(10):1271–1281.PubMedCrossRefGoogle Scholar
  33. 33.
    Slifstein M, Lamelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies.J Nucl Med 2000; 41(12): 2083–2088.PubMedGoogle Scholar
  34. 34.
    Gunn R, Lammertsma A, Hume S, Cunningham V. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model.Neuroimage 1997; 6(4):279–287.PubMedCrossRefGoogle Scholar
  35. 35.
    Watabe H, Watabe H, Jino H, Jino H, Kawachi N, Kawachi N, et al. Parametric imaging of myocardial blood flow with15O-water and PET using the basis function method.J Nucl Med 2005; 46(7): 1219–1224.PubMedGoogle Scholar
  36. 36.
    Breier A, Su T, Saunders R, Carson R, Kolachana B, Bartolomeis de A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method.Proc Natl Acad Sci USA 1997; 94(6): 2569–2574.PubMedCrossRefGoogle Scholar
  37. 37.
    Endres C, Kolachana B, Saunders R, Su T, Weinberger D, Breier A, et al. Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies.J Cereb Blood Flow Metab 1997; 17(9): 932–942.PubMedCrossRefGoogle Scholar
  38. 38.
    Koeppe R, Raffel D, Snyder S, Ficaro E, Kilboum M, Kuhl D. Dual-[11C]tracer single-acquisition positron emission tomography studies.J Cereb Blood Flow Metab 2001; 21 (12): 1480–1492.PubMedCrossRefGoogle Scholar
  39. 39.
    Kudomi N, Hayashi T, Teramoto N, Watabe H, Kawachi N, Ohta Y, et al. Rapid quantitative measurement of CMRO2 and CBF by dual administration of15O-labeled oxygen and water during a single PET scan—a validation study and error analysis in anesthetized monkeys.J Cereb Blood Flow Metab 2005; 25: 1209–1224.PubMedCrossRefGoogle Scholar
  40. 40.
    Green L, Nguyen K, Berenji B, Iyer M, Bauer E, Barrio J, et al. A tracer kinetic model for18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET.J Nucl Med 2004; 45(9): 1560–1570.PubMedGoogle Scholar
  41. 41.
    Richard J, Zhou Z, Chen D, Mintun M, Piwnica-Worms D, Factor P, et al. Quantitation of pulmonary transgene expression with PET imaging.J Nucl Med 2004; 45(4): 644–654.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Hiroshi Watabe
    • 1
  • Yoko Ikoma
    • 2
  • Yuichi Kimura
    • 3
  • Mika Naganawa
    • 3
    • 4
  • Miho Shidahara
    • 2
  1. 1.Department of Investigative RadiologyNational Cardiovascular Center Research InstituteOsakaJapan
  2. 2.Department of Biophysics, Molecular Imaging CenterNational Institute of Radiological SciencesJapan
  3. 3.Positron Medical CenterTokyo Metropolitan Institute of GerontologyJapan
  4. 4.Japan Society for the Promotion of ScienceJapan

Personalised recommendations