PET/CT today: System and its impact on cancer diagnosis



Over the past six years, PET/CT has spread rapidly and replaced conventional PET. Although PET/ CT is a combination of PET for functional information and CT for morphological information, their combination is synergistic. PET/CT fusion images result in higher diagnostic accuracy with fewer equivocal findings. This results in a greater impact on cancer diagnosis. With attenuation correction performed by the CT component, PET/CT can provide higher quality images over shorter examination times than conventional PET. As with all modalities, PET/CT has several characteristic artifacts such as misregistration due to respiration, overattenuation correction due to metals, etc. Awareness of these pitfalls will help the imaging physician use PET/CT effectively in daily practice.

Key words

positron-emission tomography tomography scanners X-ray computed 18F-FDG radionuclide imaging 


  1. 1.
    Frazee D. Positron emission tomography: a technology assessment of PET imaging-past, present, and future.Radiol Manage 2004; 26: 38–43.PubMedGoogle Scholar
  2. 2.
    Fukuda H, Matsuzawa T, Abe Y, Endo S, Yamada K, Kubota K, et al. Experimental study for cancer diagnosis with positron-labeled fluorinated glucose analogs: [18F]-2-fiuoro-2-deoxy-D-mannose: a new tracer for cancer detection.Eur J Nucl Med 1982; 7: 294–297.PubMedGoogle Scholar
  3. 3.
    Irie T, Ido T, Fukushi K, Iwata R, Uoji M, Tamate K, et al. Aspects of the preparation of18F-2-deoxy-2-fluoro-D-glu-cose (18FDG) for medical use.Radioisotopes 1982; 31: 11–15.PubMedGoogle Scholar
  4. 4.
    Hubner KF, Buonocore E, Gould HR, Thie J, Smith GT, Stephens S, et al. Differentiating benign from malignant lung lesions using “quantitative” parameters of FDG PET images.Clin Nucl Med 1996; 21: 941–949.PubMedCrossRefGoogle Scholar
  5. 5.
    Hagberg RC, Segall GM, Stark P, Burdon TA, Pompili MF. Characterization of pulmonary nodules and mediastinal staging of bronchogenic carcinoma with F-18 fluorodeoxy-glucose positron emission tomography.Eur J Cardiothorac Surg 1997; 12: 92–97.PubMedCrossRefGoogle Scholar
  6. 6.
    Bury T, Dowlati A, Paulus P, Corhay JL, Benoit T, Kayembe JM, et al. Evaluation of the solitary pulmonary nodule by positron emission tomography imaging.Eur Respir J 1996; 9: 410–414.PubMedCrossRefGoogle Scholar
  7. 7.
    Kostakoglu L, Goldsmith SJ. Fluorine-18 fluorodeoxy-glucose positron emission tomography in the staging and follow-up of lymphoma: is it time to shift gears?Eur J Nucl Med 2000; 27: 1564–1578.PubMedCrossRefGoogle Scholar
  8. 8.
    Sasaki M, Kuwabara Y, Koga H, Nakagawa M, Chen T, Kaneko K, et al. Clinical impact of whole body FDG-PET on the staging and therapeutic decision making for malignant lymphoma.Ann Nucl Med 2002; 16: 337–345.PubMedGoogle Scholar
  9. 9.
    Yamamoto F, Tsukamoto E, Nakada K, Takei T, Zhao S, Asaka M, et al.18F-FDG PET is superior to67Ga SPECT in the staging of non-Hodgkin’s lymphoma.Ann Nucl Med 2004; 18: 519–526.PubMedCrossRefGoogle Scholar
  10. 10.
    Strauss LG, Clorius JH, Schlag P, Lehner B, Kimmig B, Engenhart R, et al. Recurrence of colorectal tumors: PET evaluation.Radiology 1989; 170: 329–332.PubMedGoogle Scholar
  11. 11.
    Keogan MT, Lowe VJ, Baker ME, McDermott VG, Lyerly HK, Coleman RE. Local recurrence of rectal cancer: evaluation with F-18 fluorodeoxyglucose PET imaging.Abdom Imaging 1997; 22: 332–337.PubMedCrossRefGoogle Scholar
  12. 12.
    Ogunbiyi OA, Flanagan FL, Dehdashti F, Siegel BA, Trask DD, Birnbaum EH, et al. Detection of recurrent and metastatic colorectal cancer: comparison of positron emission tomography and computed tomography.Ann Surg Oncol 1997; 4: 613–620.PubMedCrossRefGoogle Scholar
  13. 13.
    Beyer T, Tellmann L, Nickel I, Pietrzyk U. On the use of positioning aids to reduce misregistration in the head and neck in whole-body PET/CT studies.J Nucl Med 2005; 46: 596–602.PubMedGoogle Scholar
  14. 14.
    von Schulthess GK. Positron emission tomography versus positron emission tomography/computed tomography: from “unclear” to “new-clear” medicine.Mol Imaging Biol 2004; 6: 183–187.CrossRefGoogle Scholar
  15. 15.
    Alpert NM, Berdichevsky D, Levin Z, Morris ED, Fischman AJ. Improved methods for image registration.Neuroimage 1996; 3: 10–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Alyafei S, Inoue T, Zhang H, Ahmed K, Oriuchi N, Sato N, et al. Image Fusion System Using PACS for MRI, CT, and PET Images.Clin Positron Imaging 1999; 2: 137–143.PubMedCrossRefGoogle Scholar
  17. 17.
    Barra V, Boire JV. A general framework for the fusion of anatomical and functional medical images.Neuroimage 2001; 13: 410–424.PubMedCrossRefGoogle Scholar
  18. 18.
    Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner.Med Phys 1998; 25: 2046–2053.PubMedCrossRefGoogle Scholar
  19. 19.
    Townsend DW, Carney JP, Yap JT, Hall NC. PET/CT today and tomorrow.J Nucl Med 2004; 45 Suppl 1: 4S-14S.PubMedGoogle Scholar
  20. 20.
    Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology.J Nucl Med 2000; 41: 1369–1379.PubMedGoogle Scholar
  21. 21.
    Kluetz P, Villemagne VV, Meltzer C, Chander S, Martinelli M, Townsend D. 20. The Case for PET/CT. Experience at the University of Pittsburgh.Clin Positron Imaging 2000; 3: 174.PubMedCrossRefGoogle Scholar
  22. 22.
    Kluetz PG, Meltzer CC, Villemagne VL, Kinahan PE, Chander S, Martinelli MA, et al. Combined PET/CT Imaging in Oncology. Impact on Patient Management.Clin Positron Imaging 2000; 3: 223–230.PubMedCrossRefGoogle Scholar
  23. 23.
    Martinelli M, Townsend D, Meltzer C, Villemagne VV. 7. Survey of Results of Whole Body Imaging Using the PET/CT at the University of Pittsburgh Medical Center PET Facility.Clin Positron Imaging 2000; 3: 161.PubMedCrossRefGoogle Scholar
  24. 24.
    Brambilla M, Secco C, Dominietto M, Matheoud R, Sacchetti G, Inglese E. Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate-based whole-body PET/CT scanner with the National Electrical Manufacturers Association NU 2-2001 standard.J Nucl Med 2005; 46: 2083–2091.PubMedGoogle Scholar
  25. 25.
    Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion.Semin Nucl Med 2003; 33: 193–204.PubMedCrossRefGoogle Scholar
  26. 26.
    Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion.Br J Radiol 2002; 75 Spec No: S24–30.PubMedGoogle Scholar
  27. 27.
    Kim JH, Czernin J, Allen-Auerbach MS, Halpern BS, Fueger BJ, Hecht JR, et al. Comparison between18F-FDG PET, in-line PET/CT, and software fusion for restaging of recurrent colorectal cancer.J Nucl Med 2005; 46: 587–595.PubMedGoogle Scholar
  28. 28.
    Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology.Eur J Nucl Med Mol Imaging 2003; 30: 588–596.PubMedGoogle Scholar
  29. 29.
    Sarikaya I, Yeung HW, Erdi Y, Larson SM. Respiratory artefact causing malpositioning of liver dome lesion in right lower lung.Clin Nucl Med 2003; 28: 943–944.PubMedCrossRefGoogle Scholar
  30. 30.
    Goerres GW, Burger C, Schwitter MR, Heidelberg TN, Seifert B, von Schulthess GK. PET/CT of the abdomen: optimizing the patient breathing pattern.Eur Radiol 2003; 13: 734–739.PubMedCrossRefGoogle Scholar
  31. 31.
    deJuan R, Seifert B, Berthold T, von Schulthess GK, Goerres GW. Clinical evaluation of a breathing protocol for PET/CT.Eur Radiol 2004; 14: 1118–1123.CrossRefGoogle Scholar
  32. 32.
    Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax.Med Phys 2004; 31: 3179–3186.PubMedCrossRefGoogle Scholar
  33. 33.
    Ay MR, Zaidi H. Development and validation of MCNP4C-based Monte Carlo simulator for fan-and cone-beam x-ray CT.Phys Med Biol 2005; 50: 4863–4885.PubMedCrossRefGoogle Scholar
  34. 34.
    Larson SM, Nehmeh SA, Erdi YE, Humm JL. PET/CT in non-small-cell lung cancer: value of respiratory-gated PET.Chang Gung Med J 2005; 28: 306–314.PubMedGoogle Scholar
  35. 35.
    Boucher L, Rodrigue S, Lecomte R, Benard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results.J Nucl Med 2004; 45: 214–219.PubMedGoogle Scholar
  36. 36.
    Cohade C, Wahl RL. Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation methods, diagnostic improvements.Semin Nucl Med 2003; 33: 228–237.PubMedCrossRefGoogle Scholar
  37. 37.
    Seemann MD. PET/CT: fundamental principles.Eur J Med Res 2004; 9: 241–246.PubMedGoogle Scholar
  38. 38.
    Kamel E, Hany TF, Burger C, Treyer V, Lonn AH, von Schulthess GK, et al. CT vs68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current.Eur J Nucl Med Mol Imaging 2002; 29: 346–350.PubMedCrossRefGoogle Scholar
  39. 39.
    Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511 -keV attenuation coefficients.Eur J Nucl Med Mol Imaging 2002; 29: 922–927.PubMedCrossRefGoogle Scholar
  40. 40.
    Goerres GW, Ziegler SI, Burger C, Berthold T, Von Schulthess GK, Buck A. Artifacts at PET and PET/CT caused by metallic hip prosthetic material.Radiology 2003; 226: 577–584.PubMedCrossRefGoogle Scholar
  41. 41.
    Bujenovic S, Mannting F, Chakrabarti R, Ladnier D. Arti-factual 2-deoxy-2-[(l8)F]fluoro-D-glucose localization surrounding metallic objects in a PET/CT scanner using CT-based attenuation correction.Mol Imaging Biol 2003; 5: 20–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Antoch G, Jentzen W, Freudenberg LS, Stattaus J, Mueller SP, Debatin JF, et al. Effect of oral contrast agents on computed tomography-based positron emission tomography attenuation correction in dual-modality positron emission tomography/computed tomography imaging.Invest Radiol 2003; 38: 784–789.PubMedGoogle Scholar
  43. 43.
    Antoch G, Freudenberg LS, Egelhof T, Stattaus J, Jentzen W, Debatin JF, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans.J Nucl Med 2002; 43: 1339–1342.PubMedGoogle Scholar
  44. 44.
    DiFilippo FP, Brunken RC. Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/ CT?J Nucl Med 2005; 46: 436–443.PubMedGoogle Scholar
  45. 45.
    Bockisch A, Beyer T, Antoch G, Freudenberg LS, Kuhl H, Debatin JF, et al. Positron emission tomography/computed tomography-imaging protocols, artifacts, and pitfalls.Mol Imaging Biol 2004; 6: 188–199.PubMedCrossRefGoogle Scholar
  46. 46.
    Robinson P, Parkin A. Respiratory motion artefacts on PET/CT.Eur J Nucl Med Mol Imaging 2003; 30: 1712.PubMedCrossRefGoogle Scholar
  47. 47.
    Papathanassiou D, Becker S, Amir R, Meneroux B, Liehn JC. Respiratory motion artefact in the liver dome on FDG PET/CT: comparison of attenuation correction with CT and a caesium external source.Eur J Nucl Med Mol Imaging 2005; 32: 1422–1428.PubMedCrossRefGoogle Scholar
  48. 48.
    Sourbelle K, Kachelriess M, Kalender WA. Reconstruction from truncated projections in CT using adaptive detruncation.Eur Radiol 2005; 15: 1008–1014.PubMedCrossRefGoogle Scholar
  49. 49.
    Mawlawi O, Erasmus JJ, Pan T, Cody DD, Campbell R, Lonn AH, et al. Truncation Artifact on PET/CT: Impact on Measurements of Activity Concentration and Assessment of a Correction Algorithm.AJR Am J Roentgenol 2006; 186: 1458–1467.PubMedCrossRefGoogle Scholar
  50. 50.
    Beyer T, Bockisch A, Kuhl H, Martinez MJ. Whole-Body18F-FDG PET/CT in the Presence of Truncation Artifacts.J Nucl Med 2006; 47: 91–99.PubMedGoogle Scholar
  51. 51.
    Torizuka T, Fisher SJ, Brown RS, Wahl RL. Effect of insulin on uptake of FDG by experimental mammary carcinoma in diabetic rats.Radiology 1998; 208: 499–504.PubMedGoogle Scholar
  52. 52.
    Beyer T, Antoch G, Muller S, Egelhof T, Freudenberg LS, Debatin J, et al. Acquisition protocol considerations for combined PET/CT imaging.J Nucl Med 2004; 45 Suppl 1: 25S-35S.PubMedGoogle Scholar
  53. 53.
    Watson CC, Casey ME, Bendriem B, Carney JP, Townsend DW, Eberl S, et al. Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans.J Nucl Md 2005; 46: 1825–1834.Google Scholar
  54. 54.
    Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability.J Nucl Med 2004; 45: 797–801.PubMedGoogle Scholar
  55. 55.
    Halpern BS, Dahlbom M, Auerbach MA, Schiepers C, Fueger BJ, Weber WA, et al. Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study.J Nucl Med 2005; 46: 603–607.PubMedGoogle Scholar
  56. 56.
    Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on18F-FDG PET/CT standardized uptake values.J Nucl Med 2005; 46: 424–428.PubMedGoogle Scholar
  57. 57.
    Wu TH, Chu TC, Huang YH, Chen LK, Mok SP, Lee JK, et al. A positron emission tomography/computed tomography (PET/CT) acquisition protocol for CT radiation dose optimization.Nucl Med Commun 2005; 26: 323–330.PubMedCrossRefGoogle Scholar
  58. 58.
    Li T, Schreibmann E, Thomdyke B, Tillman G, Boyer A, Koong A, et al. Radiation dose reduction in four-dimensional computed tomography.Med Phys 2005; 32: 3650–3660.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu TH, Huang YH, Lee JJ, Wang SY, Wang SC, Su CT, et al. Radiation exposure during transmission measurements: comparison between CT-and germanium-based techniques with a current PET scanner.Eur J Nucl Med Mol Imaging 2004; 31: 38–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Brix G, Lechel U, Glatting G, Ziegler SI, Munzing W, Muller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality18F-FDG PET/CT examinations.J Nucl Med 2005; 46: 608–613.PubMedGoogle Scholar
  61. 61.
    Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF. To enhance or not to enhance?18F-FDG and CT contrast agents in dual-modality18F-FDG PET/CT.J Nucl Med 2004; 45 Suppl 1: 56S-65S.PubMedGoogle Scholar
  62. 62.
    Brechtel K, Klein M, Vogel M, Mueller M, Aschoff P, Beyer T, et al. Optimized contrast-enhanced CT protocols for diagnostic whole-body18F-FDG PET/CT: technical aspects of single-phase versus multiphase CT imaging.J Nucl Med 2006; 47: 470–476.PubMedGoogle Scholar
  63. 63.
    Strobel K, Thuerl CM, Hany TF. How much intravenous contrast is needed in FDG-PET/CT?Nuklearmedizin 2005; 44 Suppl 1: S32–37.PubMedGoogle Scholar
  64. 64.
    Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Hojgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients.Eur J Nucl Med Mol Imaging 2005; 32: 1167–1175.PubMedCrossRefGoogle Scholar
  65. 65.
    Nakamoto Y, Chin BB, Kraitchman DL, Lawler LP, Marshall LT, Wahl RL. Effects of nonionic intravenous contrast agents at PET/CT imaging: phantom and canine studies.Radiology 2003; 227: 817–824.PubMedCrossRefGoogle Scholar
  66. 66.
    Yau YY, Chan WS, Tarn YM, Vernon P, Wong S, Coel M, et al. Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error?J Nucl Med 2005; 46: 283–291.PubMedGoogle Scholar
  67. 67.
    Rosenbaum SJ, Lind T, Antoch G, Bockisch A. False-Positive FDG PET Uptake-the Role of PET/CT.Eur Radiol 2006; 16: 1054–1065.PubMedCrossRefGoogle Scholar
  68. 68.
    Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake.Radiographics 2004; 24: 1411–1431.PubMedCrossRefGoogle Scholar
  69. 69.
    Minotti AJ, Shah L, Keller K. Positron emission tomography/computed tomography fusion imaging in brown adipose tissue.Clin Nucl Med 2004; 29: 5–11.PubMedCrossRefGoogle Scholar
  70. 70.
    Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region.Eur J Nucl Med Mol Imaging 2002; 29: 1393–1398.PubMedCrossRefGoogle Scholar
  71. 71.
    Yeung HW, Grewal RK, Gonen M, Schoder H, Larson SM. Patterns of(18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET.J Nucl Med 2003; 44: 1789–1796.PubMedGoogle Scholar
  72. 72.
    Cohade C, Mourtzikos KA, Wahl RL. “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with18F-FDG PET/CT.J Nucl Med 2003; 44: 1267–1270.PubMedGoogle Scholar
  73. 73.
    Heiba SI, Bemik S, Raphael B, Sandella N, Cholewinski W, Klein P. The distinctive role of positron emission tomography/computed tomography in breast carcinoma with brown adipose tissue 2-fluoro-2-deoxy-D-glucose uptake.Breast J 2005; 11: 457–461.PubMedCrossRefGoogle Scholar
  74. 74.
    Bar-Shalom R, Gaitini D, Keidar Z, Israel O. Non-malignant FDG uptake in infradiaphragmatic adipose tissue: a new site of physiological tracer biodistribution characterised by PET/CT.Eur J Nucl Med Mol Imaging 2004; 31: 1105–1113.PubMedCrossRefGoogle Scholar
  75. 75.
    Truong MT, Erasmus JJ, Munden RF, Marom EM, Sabloff BS, Gladish GW, et al. Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT.AJR Am J Roentgenol 2004; 183: 1127–1132.PubMedGoogle Scholar
  76. 76.
    Boland GW, Goldberg MA, Lee MJ, Mayo-Smith WW, Dixon J, McNicholas MM, et al. Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2-[F-18]-fluoro-2-deoxy-D-glucose.Radiology 1995; 194: 131–134.PubMedGoogle Scholar
  77. 77.
    Erasmus JJ, Patz EF Jr, McAdams HP, Murray JG, Herndon J, Coleman RE, et al. Evaluation of adrenal masses in patients with bronchogenic carcinoma using18F-fluoro-deoxyglucose positron emission tomography.AJR Am J Roentgenol 1997; 168: 1357–1360.PubMedGoogle Scholar
  78. 78.
    Maurea S, Mainolfi C, Bazzicalupo L, Panico MR, Imparato C, Alfano B, et al. Imaging of adrenal tumors using FDG PET: comparison of benign and malignant lesions.AJR Am J Roentgenol 1999; 173: 25–29.PubMedGoogle Scholar
  79. 79.
    Bagheri B, Maurer AH, Cone L, Doss M, Adler L. Characterization of the normal adrenal gland with18F-FDG PET/ CT.J Nucl Med 2004; 45: 1340–1343.PubMedGoogle Scholar
  80. 80.
    Blake MA, Slattery JM, Kalra MK, Halpern EF, Fischman AJ, Mueller PR, et al. Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy-initial experience.Radiology 2006; 238: 970–977.PubMedCrossRefGoogle Scholar
  81. 81.
    Reinartz P, Wieres FJ, Schneider W, Schur A, Buell U. Side-by-side reading of PET and CT scans in oncology: which patients might profit from integrated PET/CT?Eur J Nucl Med Mol Imaging 2004; 31: 1456–1461.PubMedCrossRefGoogle Scholar
  82. 82.
    Buell U, Wieres FJ, Schneider W, Reinartz P.18FDG-PET in 733 consecutive patients with or without side-by-side CT evaluation: analysis of 921 lesions.Nuklearmedizin 2004; 43: 210–216.PubMedGoogle Scholar
  83. 83.
    Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET.J Clin Oncol 2004; 22: 4357–4368.PubMedCrossRefGoogle Scholar
  84. 84.
    Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography.N Engl J Med 2003; 348: 2500–2507.PubMedCrossRefGoogle Scholar
  85. 85.
    Israel O, Mor M, Guralnik L, Hermoni N, Gaitini D, Bar-Shalom R, et al. Is18F-FDG PET/CT useful for imaging and management of patients with suspected occult recurrence of cancer?J Nucl Med 2004; 45: 2045–2051.PubMedGoogle Scholar
  86. 86.
    Barranger E, Kerrou K, Petegnief Y, David-Montefiore E, Cortez A, Darai E Laparoscopic resection of occult metastasis using the combination of FDG-positron emission tomography/computed tomography image fusion with in-traoperative probe guidance in a woman with recurrent ovarian cancer.Gynecol Oncol 2005; 96: 241–244.PubMedCrossRefGoogle Scholar
  87. 87.
    Gutzeit A, Antoch G, Kuhl H, Egelhof T, Fischer M, Hauth E, et al. Unknown primary tumors: detection with dual-modality PET/CT-initial experience.Radiology 2005; 234: 227–234.PubMedCrossRefGoogle Scholar
  88. 88.
    Pelosi E, Pennone M, Deandreis D, Douroukas A, Mancini M, Bisi G. Role of whole body positron emission tomography/computed tomography scan with18F-fluorodeoxy-glucose in patients with biopsy proven tumor metastases from unknown primary site.Q J Nucl Med Mol Imaging 2006; 50: 15–22.PubMedGoogle Scholar
  89. 89.
    Metser U, Golan O, Levine CD, Even-Sapir E. Tumor lesion detection: when is integrated positron emission tomography/computed tomography more accurate than side-by-side interpretation of positron emission tomography and computed tomography?J Comput Assist Tomogr 2005; 29: 554–559.PubMedCrossRefGoogle Scholar
  90. 90.
    Allen-Auerbach M, Quon A, Weber WA, Obrzut S, Crawford T, Silverman DH, et al. Comparison between 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma.Mol Imaging Biol 2004; 6: 411–416.PubMedCrossRefGoogle Scholar
  91. 91.
    Tatsumi M, Cohade C, Nakamoto Y, Fishman EK, Wahl RL. Direct comparison of FDG PET and CT findings in patients with lymphoma: initial experience.Radiology 2005; 237: 1038–1045.PubMedCrossRefGoogle Scholar
  92. 92.
    Bristow RE. Combined PET/CT for detecting recurrent ovarian cancer limited to retroperitoneal lymph nodes: Response to a letter from Dr. Maurie Markman.Gynecol Oncol 2006.Google Scholar
  93. 93.
    Sironi S, Messa C, Mangili G, Zangheri B, Aletti G, Garavaglia E, et al. Integrated FDG PET/CT in patients with persistent ovarian cancer: correlation with histologic findings.Radiology 2004; 233: 433–440.PubMedCrossRefGoogle Scholar
  94. 94.
    Zissin R, Metser U, Hain D, Even-Sapir E. Mesenteric panniculitis in oncologic patients: PET-CT findings.Br J Radiol 2006; 79: 37–43.PubMedCrossRefGoogle Scholar
  95. 95.
    Ciernik IF, Huser M, Burger C, Davis JB, Szekely G. Automated functional image-guided radiation treatment planning for rectal cancer.Int J Radiat Oncol Biol Phys 2005; 62: 893–900.PubMedGoogle Scholar
  96. 96.
    Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study.Int J Radiat Oncol Biol Phys 2003; 57: 853–863.PubMedGoogle Scholar
  97. 97.
    Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer.Int J Radiat Oncol Biol Phys 2005; 63: 1016–1023.PubMedGoogle Scholar
  98. 98.
    Frank SJ, Chao KS, Schwartz DL, Weber RS, Apisarnthanarax S, Macapinlac HA. Technology insight: PET and PET/CT in head and neck tumor staging and radiation therapy planning.Nat Clin Pract Oncol 2005; 2: 526–533.PubMedCrossRefGoogle Scholar
  99. 99.
    Leong T, Everitt C, Yuen K, Condron S, Hui A, Ngan SY, et al. A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer.Radiother Oncol 2006; 78: 254–261.PubMedCrossRefGoogle Scholar
  100. 100.
    Messa C, Ceresoli GL, Rizzo G, Artioli D, Cattaneo M, Castellone P, et al. Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer.Q J Nucl Med Mol Imaging 2005; 49: 259–266.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Medical Cooperation Teishinkai Central CI clinicSapporo Medi-Care center buildingSapporoJapan

Personalised recommendations