International Journal of Hematology

, Volume 78, Issue 5, pp 390–401 | Cite as

The Role of theMLL Gene in Infant Leukemia

  • Mariko Eguchi
  • Minenori Eguchi-Ishimae
  • Mel Greaves
Progress in hematology

Abstract

TheMLL gene is a major player in leukemia, particularly in infant leukemia and in secondary, therapy-related acute leukemia. The normalMLL gene plays a key role in developmental regulation of gene expression (includingHOX genes), and in leukemia this function is subverted by breakage, recombination, and chimeric fusion with one of 40 or more alternative partner genes. In infant leukemias, the chromosome translocations involvingMLL arise during fetal hematopoiesis, possibly in a primitive lymphomyeloid stem cell. In general, these leukemias have a very poor prognosis. The malignancy of these leukemias is all the more dramatic considering their very short preclinical natural history or latency. These data raise fundamental issues of how such divergentMLL chimeric genes transform cells, why they so rapidly evolve to a malignant status, and what alternative or novel therapeutic strategies might be considered. We review here progress in tackling these questions.

Key words

MLL gene Infant leukemia In utero Short latency Oligomerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia.Blood. 2000;96:24–33.PubMedGoogle Scholar
  2. 2.
    Felix CA. Secondary leukemias induced by topoisomerase-tar- geted drugs.Biochim BiophysActa. 1998;1400:233–255.Google Scholar
  3. 3.
    Ziemin-van der Poel S, McCabe NR, Gill HJ, et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias.Proc Natl Acad Sci USA. 1991; 88:10735–10739.CrossRefGoogle Scholar
  4. 4.
    Cimino G, Moir DT, Canaani O, et al. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations.Cancer Res. 1991;51:6712–6714.PubMedGoogle Scholar
  5. 5.
    Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias.Cell. 1992;71:691–700.PubMedCrossRefGoogle Scholar
  6. 6.
    Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias.Nat Genet. 1992;2:113–118.PubMedCrossRefGoogle Scholar
  7. 7.
    DiMartino JF, Cleary ML. Mll rearrangements in haematological malignancies: lessons from clinical and biological studies.Br J Haematol. 1999;106:614–626.PubMedCrossRefGoogle Scholar
  8. 8.
    Rowley JD. The role of chromosome translocations in leukemogenesis.Semin Hematol. 1999;36:59–72.PubMedGoogle Scholar
  9. 9.
    Nilson I, Lochner K, Siegler G, et al. Exon/intron structure of the human ALL-1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukaemias.Br J Haematol. 1996;93:966–972.PubMedCrossRefGoogle Scholar
  10. 10.
    Rasio D, Schichman SA, Negrini M, Canaani E, Croce CM. Complete exon structure of the ALL1 gene.Cancer Res. 1996;56:1766–1769.PubMedGoogle Scholar
  11. 11.
    Marschalek R, Nilson I, Lochner K, et al. The structure of the human ALL-1/MLL/HRX gene.Leuk Lymphoma. 1997;27:417–428.PubMedCrossRefGoogle Scholar
  12. 12.
    Gu Y, Nakamura T, Alder H, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene.Cell. 1992;71:701–708.PubMedCrossRefGoogle Scholar
  13. 13.
    Bernard OA, Berger R. Molecular basis of 11q23 rearrangements in hematopoietic malignant proliferations.Genes Chromosomes Cancer. 1995;13:75–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Gu Y, Alder H, Nakamura T, et al. Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia.Cancer Res. 1994;54:2326–2330.Google Scholar
  15. 15.
    Broeker PL, Super HG, Thirman MJ, et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites.Blood. 1996;87:1912–1922.PubMedGoogle Scholar
  16. 16.
    Mirkovitch J, Mirault ME, Laemmli UK. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold.Cell. 1984;39:223–232.PubMedCrossRefGoogle Scholar
  17. 17.
    Laemmli UK, Kas E, Poljak L, Adachi Y. Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains.Curr Opin Genet Dev. 1992;2:275–285.PubMedCrossRefGoogle Scholar
  18. 18.
    Schichman SA, Caligiuri MA, Strout MP, et al. ALL-1 tandem duplication in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements.Cancer Res. 1994;54:4277–4280.PubMedGoogle Scholar
  19. 19.
    So CW, Ma ZG, Price CM, et al. MLL self fusion mediated by Alu repeat homologous recombination and prognosis of AML-M4/M5 subtypes.Cancer Res. 1997;57:117–122.PubMedGoogle Scholar
  20. 20.
    Strout MP, Marcucci G, Bloomfield CD, Caligiuri MA. The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia.Proc NatlAcad Sci USA. 1998;95:2390–2395.CrossRefGoogle Scholar
  21. 21.
    Felix CA. Leukemias related to treatment with DNA topoisomerase II inhibitors.Med Pediatr Oncol. 2001;36:525–535.PubMedCrossRefGoogle Scholar
  22. 22.
    Aplan PD, Chervinsky DS, Stanulla M, Burhans WC. Site-specific DNA cleavage within the MLL breakpoint cluster region induced by topoisomerase II inhibitors.Blood. 1996;87:2649–2658.PubMedGoogle Scholar
  23. 23.
    Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia.Proc Natl Acad Sci USA. 2000;97:4790–47955.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ishii E, Eguchi M, Eguchi-Ishimae M, et al. In vitro cleavage of the MLL gene by topoisomerase II inhibitor (etoposide) in normal cord and peripheral blood mononuclear cells.Int J Hematol. 2002; 76:74–79.PubMedCrossRefGoogle Scholar
  25. 25.
    Reichel M, Gillert E, Nilson I, et al. Fine structure of translocation breakpoints in leukemic blasts with chromosomal translocation t(4;11): the DNA damage-repair model of translocation.Oncogene. 1998;17:3035–3044.PubMedCrossRefGoogle Scholar
  26. 26.
    Gillert E, Leis T, Repp R, et al. A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells.Oncogene. 1999;18:4663–4671.PubMedCrossRefGoogle Scholar
  27. 27.
    Langer T, Metzler M, Reinhardt D, et al. Analysis of t(9;11) chromosomal breakpoint sequences in childhood acute leukemia: almost identical MLL breakpoints in therapy-related AML after treatment without etoposides.Genes Chromosomes Cancer. 2003;36:393–401.PubMedCrossRefGoogle Scholar
  28. 28.
    Greaves MF, Wiemel J. Origins of chromosome translocations in childhood leukaemia.Nat Rev Cancer. 2003;3:639–649.PubMedCrossRefGoogle Scholar
  29. 29.
    Betti CJ, Villalobos MJ, Diaz MO, Vaughan AT. Apoptotic triggers initiate translocations within the MLL gene involving the nonho- mologous end joining repair system.Cancer Res. 2001;61:4550–45555.PubMedGoogle Scholar
  30. 30.
    Sim SP, Liu LF. Nucleolytic cleavage of the mixed lineage leukemia breakpoint cluster region during apoptosis.J Biol Chem. 2001;276:31590–31595.PubMedCrossRefGoogle Scholar
  31. 31.
    Betti CJ, Villalobos MJ, Diaz MO, Vaughan AT. Apoptotic stimuli initiate MLL-AF9 translocations that are transcribed in cells capable of division.Cancer Res. 2003;63:1377–1381.PubMedGoogle Scholar
  32. 32.
    Cimino G, Rapanotti MC, Biondi A, et al. Infant acute leukemias show the same biased distribution of ALL1 gene breaks as topoisomerase II related secondary acute leukemias.Cancer Res. 1997; 57:2879–2883.PubMedGoogle Scholar
  33. 33.
    Ross JA, Potter JD, Reaman GH, Pendergrass TW, Robison LL. Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children’s Cancer Group.Cancer Causes Control. 1996;7:581–590.PubMedCrossRefGoogle Scholar
  34. 34.
    Greaves MF. Aetiology of acute leukaemia.Lancet. 1997;349:344–349.PubMedCrossRefGoogle Scholar
  35. 35.
    Heim S, Bekassy AN, Garwicz S, et al. New structural chromosomal rearrangements in congenital leukemia.Leukemia. 1987;1:16–23.PubMedGoogle Scholar
  36. 36.
    Ridge SA, Cabrera ME, Ford AM, et al. Rapid intraclonal switch of lineage dominance in congenital leukaemia with a MLL gene rearrangement.Leukemia. 1995;9:2023–2026.PubMedGoogle Scholar
  37. 37.
    Hunger SP, McGavran L, Meltesen L, Parker NB, Kassenbrock CK, Bitter MA. Oncogenesis in utero: fetal death due to acute myelogenous leukaemia with an MLL translocation.Br J Haematol. 1998; 103:539–542.PubMedCrossRefGoogle Scholar
  38. 38.
    Ford AM, Ridge SA, Cabrera ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias.Nature. 1993;363:358–360.PubMedCrossRefGoogle Scholar
  39. 39.
    Gale KB, Ford AM, Repp R, et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots.Proc NatlAcad Sci USA. 1997;94:13950–13954.CrossRefGoogle Scholar
  40. 40.
    Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history.Blood. 2003;102:2321–2333.PubMedCrossRefGoogle Scholar
  41. 41.
    Gill Super HJ, Rothberg PG, Kobayashi H, Freeman AI, Diaz MO, Rowley JD. Clonal, nonconstitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23.Blood. 1994;83:641–644.Google Scholar
  42. 42.
    Megonigal MD, Rappaport EF, Jones DH, et al. t(11;22)(q23;q11.2) in acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes.Proc Natl Acad Sci USA. 1998;95:6413–6418.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Alexander FE, Patheal SL, Biondi A, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion.Cancer Res. 2001;61:2542–2546.PubMedGoogle Scholar
  44. 44.
    Wiemels JL, Pagnamenta A, Taylor GM, et al. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions.Cancer Res. 1999;59:4095–4099.PubMedGoogle Scholar
  45. 45.
    Smith MT, Wang Y, Skibola CF, et al. Low NAD(P)H:quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children.Blood. 2002;100:4590–4593.PubMedCrossRefGoogle Scholar
  46. 46.
    Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, Greaves MF. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia.Proc Natl Acad Sci USA. 2001;98:4004–4009.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Matamoros N, Matutes E, Hernandez M, et al. Neonatal mixed lineage acute leukaemia.Leukemia. 1994;8:1236–1242.PubMedGoogle Scholar
  48. 48.
    So CW, Karsunky H, Passegue E, Cozzio A,Weissman IL, Cleary ML. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice.Cancer Cell. 2003;3:161–171.PubMedCrossRefGoogle Scholar
  49. 49.
    Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ. Altered Hox expression and segmental identity in Mll-mutant mice.Nature. 1995;378:505–508.PubMedCrossRefGoogle Scholar
  50. 50.
    Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis.Proc Natl Acad Sci USA. 1998;95:10632–10636.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ. Defects in yolk sac hematopoiesis in Mll-null embryos.Blood. 1997;90:1799–1806.PubMedGoogle Scholar
  52. 52.
    Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T. Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice.Blood. 1998;92:108–117.PubMedGoogle Scholar
  53. 53.
    Fidanza V, Melotti P, Yano T, et al. Double knockout of the ALL-1 gene blocks hematopoietic differentiation in vitro.Cancer Res. 1996;56:1179–1183.PubMedGoogle Scholar
  54. 54.
    Owens BM, Hawley RG. HOX and non-HOX homeobox genes in leukemic hematopoiesis.Stem Cells. 2002;20:364–379.PubMedCrossRefGoogle Scholar
  55. 55.
    Yano T, Nakamura T, Blechman J, et al. Nuclear punctate distribution of ALL-1 is conferred by distinct elements at the N terminus of the protein.Proc Natl Acad Sci USA. 1997;94:7286–7291.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Caslini C, Alarcon AS, Hess JL,Tanaka R, Murti KG, Biondi A. The amino terminus targets the mixed lineage leukemia (MLL) protein to the nucleolus, nuclear matrix and mitotic chromosomal scaffolds.Leukemia. 2000;14:1898–1908.PubMedCrossRefGoogle Scholar
  57. 57.
    Broeker PL, Harden A, Rowley JD, Zeleznik-Le N. The mixed lineage leukemia (MLL) protein involved in 11q23 translocations contains a domain that binds cruciform DNA and scaffold attachment region (SAR) DNA.Curr Top Microbiol Immunol. 1996;211:259–268.PubMedGoogle Scholar
  58. 58.
    Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins.Nucleic Acids Res. 1998;26:4413–4421.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Birke M, Schreiner S, Garcia-Cuellar M-P, Mahr K, Titgemeyer F, Slany RK. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation.Nucl Acids Res. 2002;30:958–965.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zeleznik-Le NJ, Harden AM, Rowley JD. 11q23 translocations split the “AT-hook” cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed- lineage leukemia (MLL) gene.Proc NatlAcad Sci USA. 1994;91:10610–10614.CrossRefGoogle Scholar
  61. 61.
    Xia Z-B, Anderson M, Diaz MO, Zeleznik-Le NJ. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein.Proc NatlAcad Sci USA. 2003;100:8342–8347.CrossRefGoogle Scholar
  62. 62.
    Aasland R, Gibson TJ, Stewart AF. The PHD finger: implications for chromatin-mediated transcriptional regulation.Trends Biochem Sci. 1995;20:56–59.PubMedCrossRefGoogle Scholar
  63. 63.
    Fair K, Anderson M, Bulanova E, Mi H, Tropschug M, Diaz MO. Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells.Mol Cell Biol. 2001;21:3589–3597.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein.Mol Cell Biol. 2001;21:2249–2258.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters.Mol Cell. 2002; 10:1107–1117.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakamura T, Mori T,Tada S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation.Mol Cell. 2002;10:1119–1128.PubMedCrossRefGoogle Scholar
  67. 67.
    Yokoyama A, Kitabayashi I, Ayton PM, Cleary ML, Ohki M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties.Blood. 2002;100:3710–3718.PubMedCrossRefGoogle Scholar
  68. 68.
    Hsieh JJ, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ. Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnu- clear localization.Mol Cell Biol. 2003;23:186–194.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rowley JD. The critical role of chromosome translocations in human leukemias.Annu Rev Genet. 1998;32:495–519.PubMedCrossRefGoogle Scholar
  70. 70.
    Joh T, Yamamoto K, Kagami Y, et al. Chimeric MLL products with a Ras binding cytoplasmic protein AF6 involved in t(6;11) (q27;q23) leukemia localize in the nucleus.Oncogene. 1997;15:1681–1687.PubMedCrossRefGoogle Scholar
  71. 71.
    Schichman SA, Canaani E, Croce CM. Self-fusion of the ALL1 gene. A new genetic mechanism for acute leukemia.JAMA. 1995; 273:571–576.PubMedCrossRefGoogle Scholar
  72. 72.
    Lavau C, Szilvassy SJ, Slany R, Cleary ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL.EMBO J. 1997;16:4226–4237.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    DiMartino JF, Miller T, Ayton PM, et al. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL.Blood. 2000;96:3887–3893.PubMedGoogle Scholar
  74. 74.
    Lavau C, Luo RT, Du C, Thirman MJ. Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice.Proc Natl Acad Sci USA. 2000;97:10984–10989.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML. The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10.Blood. 2002;99:3780–3785.PubMedCrossRefGoogle Scholar
  76. 76.
    So CW, Cleary ML. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function.Mol Cell Biol. 2002;22:6542–6552.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    So CW, Cleary ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins.Blood. 2003;101:633–639.PubMedCrossRefGoogle Scholar
  78. 78.
    Lavau C, Du C, Thirman M, Zeleznik-Le N. Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia.EMBO J. 2000;19:4655–4664.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Slany RK, Lavau C, Cleary ML. The oncogenic capacity of HRX- ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX.Mol Cell Biol. 1998;18:122–129.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins.Oncogene. 2001;20:5695–5707.PubMedCrossRefGoogle Scholar
  81. 81.
    Luo RT, Lavau C, Du C, et al. The elongation domain of ELL is dispensable but its ELL-associated factor 1 interaction domain is essential for MLL-ELL-induced leukemogenesis.Mol Cell Biol. 2001;21:5678–5687.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zeisig BB, Schreiner S, Garcia-Cuellar MP, Slany RK. Transcriptional activation is a key function encoded by MLL fusion partners.Leukemia. 2003;17:359–365.PubMedCrossRefGoogle Scholar
  83. 83.
    Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene.EMBO J. 2000;19:843–851.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jacobson RH, Zhang XJ, DuBose RF, Matthews BW. Three-dimensional structure of beta-galactosidase from E. coli.Nature. 1994; 369:761–766.PubMedCrossRefGoogle Scholar
  85. 85.
    Eguchi M, Eguchi-Ishimae M, Seto M, et al. GPHN, a novel partner gene fused to MLL in a leukemia with t(11;14)(q23;q24).Genes Chromosomes Cancer. 2001;32:212–221.PubMedCrossRefGoogle Scholar
  86. 86.
    Kuwada N, Kimura F, Matsumura T, et al. t(11;14)(q23;q24) generates an MLL-human gephyrin fusion gene along with a de facto truncated MLL in acute monoblastic leukemia.Cancer Res. 2001;61:2665–2669.PubMedGoogle Scholar
  87. 87.
    So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias.Cancer Cell. 2003;4:99–110.PubMedCrossRefGoogle Scholar
  88. 88.
    Greaves MF. Infant leukaemia biology, aetiology and treatment.Leukemia. 1996;10:372–377.PubMedGoogle Scholar
  89. 89.
    Rowley JD, Olney HJ. International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy- related myelodysplastic syndromes and acute leukemia: overview report.Genes Chromosomes Cancer. 2002;33:331–345.PubMedCrossRefGoogle Scholar
  90. 90.
    Megonigal MD, Cheung NK, Rappaport EF, et al. Detection of leukemia-associated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors.Proc Natl Acad Sci USA. 2000;97:2814–2819.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Johansson B, Moorman AV, Haas OA, et al. Hematologic malignancies with t(4;11)(q21;q23)—a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. European 11q23 Workshop participants.Leukemia. 1998;12:779–787.PubMedCrossRefGoogle Scholar
  92. 92.
    Lanza C, Gaidano G, Cimino G, et al. Distribution of TP53 mutations among acute leukemias with MLL rearrangements.Genes Chromosomes Cancer. 1996;15:48–53.PubMedCrossRefGoogle Scholar
  93. 93.
    Mahgoub N, Parker RI, Hosler MR, et al. RAS mutations in pediatric leukemias with MLL gene rearrangements.Genes Chromosomes Cancer. 1998;21:270–275.PubMedCrossRefGoogle Scholar
  94. 94.
    Dobson CL, Warren AJ, Pannell R, et al. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis.EMBO J. 1999;18:3564–3574.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Schulte CE, Lindern Mv, Steinlein P, Beug H, Wiedemann LM. MLL-ENL cooperates with SCF to transform primary avian multi- potent cells.EMBO J. 2002;21:4297–4306.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Forster A, Pannell R, Drynan LF, et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer.Cancer Cell. 2003;3:449–458.PubMedCrossRefGoogle Scholar
  97. 97.
    Ernst P, Wang J, Korsmeyer SJ. The role of MLL in hematopoiesis and leukemia.Curr Opin Hematol. 2002;9:282–287.PubMedCrossRefGoogle Scholar
  98. 98.
    Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia.Nat Genet. 2002;30:41–47.PubMedCrossRefGoogle Scholar
  99. 99.
    Kemp CJ, Wheldon T, Balmain A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis.Nat Genet. 1994;8:66–69.PubMedCrossRefGoogle Scholar
  100. 100.
    Griffiths SD, Clarke AR, Healy LE, et al. Absence of p53 permits propagation of mutant cells following genotoxic damage.Oncogene. 1997;14:523–531.PubMedCrossRefGoogle Scholar
  101. 101.
    Adler HT, Chinery R, Wu DY, et al. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins.Mol Cell Biol. 1999;19:7050–7060.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kersey JH. Fifty years of studies of the biology and therapy of childhood leukemia.Blood. 1998;92:1838.PubMedGoogle Scholar
  103. 103.
    Kawasaki H, Isoyama K, Eguchi M, et al. Superior outcome of infant acute myeloid leukemia with intensive chemotherapy: results of the Japan Infant Leukemia Study Group.Blood. 2001;98:3589–3594.PubMedCrossRefGoogle Scholar
  104. 104.
    Isoyama K, Eguchi M, Hibi S, et al. Risk-directed treatment of infant acute lymphoblastic leukaemia based on early assessment of MLL gene status: results of the Japan Infant Leukaemia Study (MLL96).Br J Haematol. 2002;118:999–1010.PubMedCrossRefGoogle Scholar
  105. 105.
    Ishii E, Kawasaki H, Isoyama K, Eguchi-Ishimae M, Eguchi M. Recent advances in the treatment of infant acute myeloid leukemia.Leuk Lymphoma. 2003;44:741–748.PubMedCrossRefGoogle Scholar
  106. 106.
    Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling.Cancer Cell. 2002;1:133–143.PubMedCrossRefGoogle Scholar
  107. 107.
    Ferrando AA, Armstrong SA, Neuberg DS, et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation.Blood. 2003;102:262–268.PubMedCrossRefGoogle Scholar
  108. 108.
    Rozovskaia T, Ravid-Amir O, Tillib S, et al. Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements.Proc Natl Acad Sci USA. 2003;100:7853–7858.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Tsutsumi S, Taketani T, Nishimura K, et al. Two distinct gene expression signatures in pediatric acute lymphoblastic leukemia with MLL rearrangements.Cancer Res. 2003;63:4882–4887.PubMedGoogle Scholar
  110. 110.
    Yagi T, Morimoto A, Eguchi M, et al. Identification of a gene expression signature associated with pediatric AML prognosis.Blood. 2003;102:1849–1856.PubMedCrossRefGoogle Scholar
  111. 111.
    Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia.Nature. 1998;391:811–814.PubMedCrossRefGoogle Scholar
  112. 112.
    Fenaux P, Chomienne C, Degos L. Treatment of acute promyelocytic leukaemia.Best Pract Res Clin Haematol. 2001;14:153–174.PubMedCrossRefGoogle Scholar
  113. 113.
    Amin HM, Saeed S, Alkan S. Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17).Br J Haematol. 2001;115:287–297.PubMedCrossRefGoogle Scholar
  114. 114.
    Wang J, Saunthararajah Y, Redner RL, Liu JM. Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells.Cancer Res. 1999;59:2766–2769.PubMedGoogle Scholar
  115. 115.
    Ferrara FF, Fazi F, Bianchini A, et al. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia.Cancer Res. 2001;61:2–7.PubMedGoogle Scholar
  116. 116.
    Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.N EnglJ Med. 2001;344:1031–1037.CrossRefGoogle Scholar
  117. 117.
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome.N Engl J Med. 2001;344:1038–1042.PubMedCrossRefGoogle Scholar
  118. 118.
    Shannon KM. Resistance in the land of molecular cancer therapeutics.Cancer Cell. 2002;2:99–102.PubMedCrossRefGoogle Scholar
  119. 119.
    Armstrong SA, Kung AL, Mabon ME, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification.Cancer Cell. 2003;3:173–183.PubMedCrossRefGoogle Scholar
  120. 120.
    Taketani T,Taki T, Sugita K, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant acute lymphoblastic leukemia (ALL) with MLL rearrangement and pediatric ALL with hyperdiploidy.Blood. 2003: [Epub ahead of print]. In press.Google Scholar
  121. 121.
    Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours.J Pathol. 2002;196:1–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Nephew KP, Huang TH. Epigenetic gene silencing in cancer initiation and progression.Cancer Lett. 2003;190:125–133.PubMedCrossRefGoogle Scholar
  123. 123.
    Christman JK. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.Oncogene. 2002;21:5483–5495.PubMedCrossRefGoogle Scholar
  124. 124.
    List AF. New approaches to the treatment of myelodysplasia.Oncologist. 2002;7(suppl 1):39–49.PubMedCrossRefGoogle Scholar
  125. 125.
    Niitsu N, Hayashi Y, Sugita K, Honma Y. Sensitization by 5-aza-2’-deoxycytidine of leukaemia cells with MLL abnormalities to induction of differentiation by all-trans retinoic acid and 1 alpha,25-dihydroxyvitamin D3.Br J Haematol. 2001;112:315–326.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2003

Authors and Affiliations

  • Mariko Eguchi
    • 1
  • Minenori Eguchi-Ishimae
    • 1
  • Mel Greaves
    • 1
  1. 1.LRF Centre for Cell and Molecular Biology of Leukaemia, FRSInstitute of Cancer Research, Chester Beatty LaboratoriesLondonUK

Personalised recommendations