Effects of the Tyrosine Kinase Inhibitor Imatinib Mesylate on a Bcr-Abl-Positive Cell Line: Suppression of Autonomous Cell Growth but No Effect on Decreased Adhesive Property and Morphological Changes

  • Toshio Nishihara
  • Yasuo Miura
  • Yumi Tohyama
  • Chisato Mizutani
  • Terutoshi Hishita
  • Satoshi Ichiyama
  • Takashi Uchiyama
  • Kaoru Tohyama
Progress in Hematology


Expression of the Bcr-Abl oncoprotein alters various aspects of hematopoietic cells. We investigated the effects of a Bcr-Abl tyrosine kinase inhibitor, imatinib mesylate, on the proliferation, adhesive properties, and morphology of a Bcr-Abl-transferred cell line, TF-1 Bcr-Abl, in comparison with parental TF-1. First, the factor-independent growth of TF-1 Bcr-Abl was inhibited in the presence of imatinib mesylate, but this inhibition was overcome by addition of exogenous granulocyte-macrophage colony-stimulating factor. Imatinib mesylate remarkably reduced tyrosine phosphorylation of Bcr-Abl, Cbl, and Crkl in a time-dependent manner, and their complex formation also was affected. Imatinib mesylate inhibited activation of Stat5 rather than the MEK-ERK1/2 pathway. TF-1 Bcr-Abl cells exhibited a round shape, unlike TF-1, and the adhesive property to fibronectin was much lower than that of TF-1. Although the Bcr-Abl oncoprotein may be involved negatively in cell adhesion, the decreased adhesion and altered morphology of TF-1 Bcr-Abl cells were minimally affected by imatinib mesylate and seemed independent of Bcr-Abl kinase activity. The present data indicated that the Bcr-Abl-specific kinase inhibitor cannot control Bcr-Abl-induced cell alterations other than autonomous growth.Int J Hematol. 2003;78:233-240.

Key words

Bcr-Abl Autonomous growth Tyrosine kinase inhibitor Cell adhesion 


  1. 1.
    Puil L, Liu J, Gish G, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signaling pathway.EMBO J. 1994;13:764–773.PubMedGoogle Scholar
  2. 2.
    Mandans RA, Leibowitz DS, Gharehbaghi K, et al. Role of p21 ras in p210 bcr-abl transformation of murine myeloid cells.Blood. 1993;82:1838–1847.Google Scholar
  3. 3.
    Skorski T, Skorska NS, Szczylik C, et al. c-RAF-1 serine/threonine kinase is required in BCR/ABL-dependent and normal hemato- poiesis.Cancer Res. 1995;55:2275–2278.PubMedGoogle Scholar
  4. 4.
    Iralia RLJ, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members.J Biol Chem. 1996;271:31704–31710.CrossRefGoogle Scholar
  5. 5.
    Sattler M, Griffin JD. Mechanisms of transformation by the BCR/ ABL oncogene.Int J Hematol. 2001;73:278–291.PubMedCrossRefGoogle Scholar
  6. 6.
    Maru Y. Molecular biology of chronic myeloid leukemia.Int J Hematol. 2001;73:308–322.PubMedCrossRefGoogle Scholar
  7. 7.
    Ratiano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation.Proc Natl Acad Sci USA. 1995;92:11746–11750.CrossRefGoogle Scholar
  8. 8.
    Skorski T, Kanakaraj P, Nieborowska-Skorska M, et al. Phosphatidylinositol- 3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells.Blood. 1995;86:726–736.PubMedGoogle Scholar
  9. 9.
    ten Hoeve J, Arlinghaus RB, Guo JQ, Heisterkamp N, Groffen J. Tyrosine phosphorylation of CRKL in Philadelphia+ leukemia.Blood. 1994;84:1731–1736.Google Scholar
  10. 10.
    Bhat A, Kolibaba K, Oda T, Ohno-Jones S, Heaney C, Druker BJ. Interactions of CBL with BCR-ABL and CRKL in BCR-ABL- transformed myeloid cells.J Biol Chem. 1997;272:16170–16175.PubMedCrossRefGoogle Scholar
  11. 11.
    ten Hoeve J, Kaartinen V, Fioretos T, et al. Cellular interactions of CRKL, and SH2-SH3 adaptor protein.Cancer Res. 1994;54:2563–2567.Google Scholar
  12. 12.
    Uemura N, Salgia R, Li JL, Pisick E, Sattler M, Griffin JD. The BCR/ ABL oncogene alters interaction of the adaptor proteins CRKL and CRK with cellular proteins.Leukemia. 1997;11:376–385.PubMedCrossRefGoogle Scholar
  13. 13.
    Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein.Cell. 1993;75:175–185.PubMedGoogle Scholar
  14. 14.
    Cortez D, Reuther G, Pendergast AM. The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells.Oncogene. 1997;15:2333–2342.PubMedCrossRefGoogle Scholar
  15. 15.
    Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia.Blood. 1994;83:2038–2044.PubMedGoogle Scholar
  16. 16.
    Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukemia.Nature. 1987;328:342–344.PubMedCrossRefGoogle Scholar
  17. 17.
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with Philadelphia chromosome.N Engl J Med. 2001;344:1038–1042.PubMedCrossRefGoogle Scholar
  18. 18.
    Tauchi T, Ohyashiki K, Yamashita Y, Sugimoto S, Toyama K. SH2- containing phospho-tyrosine phosphatase SHP-1 is involved in BCR-ABL signal transduction pathways.Int J Oncol. 1997;11:471–476.Google Scholar
  19. 19.
    Thiesing JT, Jones SO, Kolibaba KS, Drucer BJ. Efficacy of STI571, an Abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents Bcr-Abl-positive cells.Blood. 2000;96:3195–3199.PubMedGoogle Scholar
  20. 20.
    Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by chronic myelogenous leukemia-specific p210bcr/abl protein.Proc Natl Acad Sci USA. 1988;85:9312–9316.PubMedCrossRefGoogle Scholar
  21. 21.
    Carpino N, Wisniewski D, Strife A, et al. p62DOK: a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells.Cell. 1997;88:197–204.PubMedCrossRefGoogle Scholar
  22. 22.
    Matsuguchi T, Salgia R, Hallek M, et al. Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony- stimulating factor and is constitutively increased by p210BCR/ABL.J Biol Chem. 1994;269:5016–5021.PubMedGoogle Scholar
  23. 23.
    Salgia R, Li JL, Lo SH, et al. Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL.J Biol Chem. 1995;270:5039–5047.PubMedCrossRefGoogle Scholar
  24. 24.
    Gotoh A, Miyazawa K, Ohyashiki K, et al. Tyrosine phosphorylation and activation of focal adhesion kinase (p125FAK) by BCR- ABL oncoprotein.Exp Hematol. 1995;23:1153–1159.PubMedGoogle Scholar
  25. 25.
    Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ. Crkl is the major tyrosine-phosphorylated-protein in neutrophils from patients with chronic myelogenous leukemia.J Biol Chem. 1994;269:22925–22928.PubMedGoogle Scholar
  26. 26.
    Sattler M, Salgia R, Shrikhande G, et al. Steel factor induces tyrosine phosphorylation of Crkl and binding of Crkl to a complex containing c-kit, phosphatidyl-inositol 3-kinase, and p120Cbl.J Biol Chem. 1997;272:10248–10253.PubMedCrossRefGoogle Scholar
  27. 27.
    Sattler M, Salgia R, Shrikhande G, et al. Differential signaling after beta-1 integrin ligation is mediated through binding of Crkl to p120CBL and p110HEF1.J Biol Chem. 1997;272:14320–14326.PubMedCrossRefGoogle Scholar
  28. 28.
    Boussiotis VA, Freeman GJ, Berezovskaya A, Barber DL, Nadler LM. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated RAP1.Science. 1997;287:124–128.CrossRefGoogle Scholar
  29. 29.
    Verfaillie CM, Hurley R, Zhao RC, Prosper F, Delforge M, Bhatia R. Pathophysiology of CML: do defects in integrin function contribute to the premature circulation and massive expansion of the BCR/ABL positive clone?J Lab Clin Med. 1997;129:584–591.PubMedCrossRefGoogle Scholar
  30. 30.
    Andoniou CE, Thien CB, Langdon WY. Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene.EMBO J. 1994;13:4515–4523.PubMedGoogle Scholar
  31. 31.
    Salgia R, Pisick E, Sattler M, et al. p130CAS forms a signaling complex with the adaptor protein CRKL in hematopoietic cells.J Biol Chem. 1996;271:25198–25203.PubMedCrossRefGoogle Scholar
  32. 32.
    Heaney C, Kolibaba K, Bhat A, et al. Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation.Blood. 1997;89:297–306.PubMedGoogle Scholar
  33. 33.
    de Jong R, ten Hoeve J, Heisterkamp N, Groffen J. CRKL is complexed with tyrosine-phosphorylated Cbl in Ph-positive leukemia.J Biol Chem. 1995;270:21468–21471.PubMedCrossRefGoogle Scholar
  34. 34.
    Hurley RW, McCathy JB, Verfaillie CM. Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation.J Clin Invest. 1995;96:511–519.PubMedCrossRefGoogle Scholar
  35. 35.
    Kramer A, Horner S, Willer A, et al. Adhesion to fibronectin stimulates proliferation of wild-type and bcr/abl-transfected murine hematopoietic cells.Proc Natl Acad Sci USA. 1999;96:2087–2092.PubMedCrossRefGoogle Scholar

Copyright information

© 2003 The Japanese Society of Hematology 2003

Authors and Affiliations

  • Toshio Nishihara
    • 1
  • Yasuo Miura
    • 1
  • Yumi Tohyama
    • 1
  • Chisato Mizutani
    • 1
  • Terutoshi Hishita
    • 1
  • Satoshi Ichiyama
    • 2
  • Takashi Uchiyama
    • 1
  • Kaoru Tohyama
    • 2
  1. 1.Department of Hematology and OncologyKyoto UniversityKyotoJapan
  2. 2.Department of Laboratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations