Hodgkin’s Lymphoma and CD30 Signal Transduction

  • Ryouichi Horie
  • Masaaki Higashihara
  • Toshiki Watanabe
Review Article

Abstract

Advances in molecular biology have shed light on the biological basis of Hodgkin’s lymphoma (HL). Knowledge of the biological basis has enabled us to understand that most Hodgkin and Reed-Sternberg (H-RS) cells are derived from germinal center B-cells and constitutive nuclear factor κB (NF-κ) activation is a common molecular feature. Molecular mechanisms responsible for constitutive NF-κB activation, Epstein Barr virus latent membrane protein 1, and defective IκBα and IκB kinase activation have been clarified in the past several years. A recent study revealed the biological link between 2 characteristic features of H-RS cells: CD30 overexpression and constitutive NF-κB activation. Ligand-independent signaling by over-expressed CD30 was shown to be a common mechanism that induced constitutive NF-κB activation in these cells. These results suggest the self-growth—promoting potential of H-RS cells and redefine the biology of HL composed of H-RS cells and lymphocytes.

Key words:

Hodgkin’s lymphoma Hodgkin and Reed-Sternberg cell CD30 NF-κ B IκBα 

References

  1. 1.
    Hodgkin T. On some morbid appearances of the absorbent glands and spleen.Med Chir Trans. 1832;17:68–114.Google Scholar
  2. 2.
    Kaufman D, Longo DL. Hodgkin’s disease.Crit Rev Oncol Hema- tol. 1992;13:135–156.CrossRefGoogle Scholar
  3. 3.
    Gruss HJ, Kadin ME. Pathophysiology of Hodgkin’s disease: functional and molecular aspects.Baillieres Clin Haematol. 1996;9: 417–446.PubMedCrossRefGoogle Scholar
  4. 4.
    Hsu SM, Hsu PL. The nature of Reed-Sternberg cells: phenotype, genotype, and other properties.Crit Rev Oncog. 1994;5:213–245.PubMedGoogle Scholar
  5. 5.
    Kanzler H, Kuppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells.J Exp Med. 1996;184:1495–1505.PubMedCrossRefGoogle Scholar
  6. 6.
    Cossman J, Annunziata CM, Barash S, et al. Reed-Sternberg cell genome expression supports a B-cell lineage.Blood. 1999;94: 411–416.PubMedGoogle Scholar
  7. 7.
    Kuppers R, Rajewsky K. The origin of Hodgkin and Reed/Stern- berg cells in Hodgkin’s disease.Annu Rev Immunol. 1998;16: 471–493.PubMedCrossRefGoogle Scholar
  8. 8.
    Brauninger A, Hansmann ML, Strickler JG, et al. Identification of common germinal center-B-cell precursors in two patients with both Hodgkin’s disease and non-Hodgkin’s lymphoma.N Engl J Med. 1999;340:1239–1247.PubMedCrossRefGoogle Scholar
  9. 9.
    Stein H, Hummel M. Cellular origin and clonality of classic Hodgkin’s lymphoma: immunophenotypic and molecular studies.Semin Hematol. 1999;36:233–241.PubMedGoogle Scholar
  10. 10.
    Durkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease.Cell. 1992;68:421–427.PubMedCrossRefGoogle Scholar
  11. 11.
    Schwab U, Stein H, Gerdes J, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells.Nature. 1982;299:65–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Stein H, Gerdes J, Schwab U, et al. Identification of Hodgkin and Sternberg Reed cells as a unique cell type derived from a newly detected small-cell population.Int J Cancer. 1982;30:445–459.PubMedCrossRefGoogle Scholar
  13. 13.
    Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells.Blood. 1985;66:848–858.PubMedGoogle Scholar
  14. 14.
    Smith CA, Gruss HJ, Davis T, et al. CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF.Cell. 1993;73: 1349–1360.PubMedCrossRefGoogle Scholar
  15. 15.
    Baker SJ, Reddy EP. Transducers of life and cell death: TNF receptor superfamily and associated proteins.Oncogene. 1996;12:1–9.PubMedGoogle Scholar
  16. 16.
    Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death.Cell. 1994;76:959–962.PubMedCrossRefGoogle Scholar
  17. 17.
    Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas.Blood. 1995;85:3378–3404.PubMedGoogle Scholar
  18. 18.
    Bargou RC, Leng C, Krappmann D, et al. High-level nuclear NF- kappa B and Oct-2 is a common feature of cultured Hodgkin/ Reed-Sternberg cells.Blood. 1996;87:4340–4347.PubMedGoogle Scholar
  19. 19.
    Wood KM, Roff M, Hay RT. Defective IκBα in Hodgkin cell lines with constitutively active NFκB.Oncogene. 1998;16:2131–2139.PubMedCrossRefGoogle Scholar
  20. 20.
    Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT. Mutations in the IκBα gene in Hodgkin’s disease suggest a tumour suppressor role for IκBα.Oncogene. 1999;18:3063–3070.PubMedCrossRefGoogle Scholar
  21. 21.
    Emmerich F, Meiser M, Hummel M, et al. Overexpression of I kappa B alpha without inhibition of NF-kappa B activity and mutations in I kappa B alpha gene in Reed-Sternberg cells.Blood. 1999;94:3129–3134.PubMedGoogle Scholar
  22. 22.
    Jungnickel B, Staratschek-Jox A, Brauninger A, et al. Clonal deleterious mutations in the IkBa gene in the malignant cells in Hodgkin’s lymphoma.J Exp Med. 2000;191:395–401.PubMedCrossRefGoogle Scholar
  23. 23.
    Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dorken B, Scheidereit C. Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed-Sternberg cells.Oncogene. 1999;18: 943–953.PubMedCrossRefGoogle Scholar
  24. 24.
    Horie R, Watanabe T, Morishita Y, et al. Ligand-independent signaling by overexpressed CD30 drives NF-κB activation in Hodg- kin-Reed Sternberg cells.Oncogene. 2002;21:2493–2503.PubMedCrossRefGoogle Scholar
  25. 25.
    Andreesen R, Osterholz J, Lohr GW, Bross KJ. A Hodgkin cell- specific antigen is expressed on a subset of auto- and alloactivated T (helper) lymphoblasts.Blood. 1984;63:1299–1302.PubMedGoogle Scholar
  26. 26.
    Schwarting R, Gerdes J, Durkop H, Falini B, Pileri S, Stein H. BER- H2: a new anti-Ki-1 (CD30) monoclonal antibody directed at a for- mol-resistant epitope.Blood. 1989;74:1678–1689.PubMedGoogle Scholar
  27. 27.
    Ellis TM, Simms PE, Slivnick DJ, Jäck HM, Fisher RI. CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO+ T cells.J Immunol. 1993;151:2380–2389.PubMedGoogle Scholar
  28. 28.
    Romagnani S, Del Prete G, Maggi E, Chilosi M, Caliqaris-Cappio F, Pizzolo G. CD30 and type 2 T helper (Th2) responses.J Leukoc Biol. 1995;57:726–730.PubMedGoogle Scholar
  29. 29.
    Del Prete G, De Carli M, Almerigogna F, et al. Preferential expression of CD30 by human CD4+ T cells producing Th2-type cytokines.FASEB J. 1995;9:81–86.Google Scholar
  30. 30.
    Manetti R, Annunziato F, Biagiotti R, et al. CD30 expression by CD8+T cells producing type 2 helper cytokines: evidence for large numbers of CD8+CD30+ T cell clones in human immunodeficiency virus infection.J Exp Med. 1994;180:2407–2411.PubMedCrossRefGoogle Scholar
  31. 31.
    Del Prete G, Maggi E, Pizzolo G, Romagnani S. CD30, Th2 cytokines and HIV infection: a complex and fascinating link.Immunol Today. 1995;16:76–80.CrossRefGoogle Scholar
  32. 32.
    Hamann D, Hilkens CM, Grogan JL, et al. CD30 expression does not discriminate between Th1- and Th2-type T cells.J Immunol. 1996;156:1387–1391.PubMedGoogle Scholar
  33. 33.
    Alzona M, Jack HM, Fisher RI, Ellis TM. CD30 defines a subset of activated human T cells that produce IFN-γ and IL-5 and exhibit enhanced B cell helper activity.J Immunol. 1994;153:2861–2867.PubMedGoogle Scholar
  34. 34.
    Abbondanzo SL, Sato N, Straus SE, Jaffe ES. Acute infectious mononucleosis. CD30 (Ki-1) antigen expression and histologic correlations.Am J Clin Pathol. 1990;93:698–702.PubMedGoogle Scholar
  35. 35.
    Biswas P, Smith CA, Goletti D, Hardy EC, Jackson RW, Fauci AS. Cross-linking of CD30 induces HIV expression in chronically infected T-cells.Immunity. 1995;2:587–596.PubMedCrossRefGoogle Scholar
  36. 36.
    Ohtsuka E, Kikuchi H, Nasu M, Takita-Sonoda Y, Fujii H, Yokoyama S. Clinicopathological features of adult T-cell leukemia with CD30 antigen expression.Leuk Lymphoma. 1994;15:303–310.PubMedCrossRefGoogle Scholar
  37. 37.
    Takeshita M, Akamatsu M, Ohshima K, et al. CD30 (Ki-1) expression in adult T-cell leukaemia/lymphoma is associated with distinctive immunohistological and clinical characteristics.Histopathol- ogy. 1995;26:539–546.CrossRefGoogle Scholar
  38. 38.
    Falini B, Pileri S, Pizzolo G, et al. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy.Blood. 1995;85:1–14.PubMedGoogle Scholar
  39. 39.
    Pallesen G The diagnostic significance of the CD30 (Ki-1) antigen.Histopathology. 1990;16:409–413.PubMedCrossRefGoogle Scholar
  40. 40.
    Younes A, Consoli U, Zhao S, et al. CD30 ligand is expressed on resting normal and malignant human B lymphocytes.Br J Haema- tol. 1996;93:569–571.CrossRefGoogle Scholar
  41. 41.
    Pinto A, Aldinucci D, Gloghini A, et al. Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin’s disease cell line.Blood. 1996;88:3299–3305.PubMedGoogle Scholar
  42. 42.
    Gruss HJ, Pinto A, Gloghini A, et al. CD30 ligand expression in nonmalignant and Hodgkin’s disease-involved lymphoid tissues.Am J Pathol. 1996;149:469–448.PubMedGoogle Scholar
  43. 43.
    Gattei V, Degan M, Gloghini A, et al. CD30 ligand is frequently expressed in human hematopoietic malignancies of myeloid and lymphoid origin.Blood. 1997;89:2048–2059.PubMedGoogle Scholar
  44. 44.
    Romagnani P, Annunziato F, Manetti R, et al. High CD30 ligand expression by epithelial cells and Hassal’s corpuscles in the medulla of human thymus.Blood. 1998;91:3323–3332.PubMedGoogle Scholar
  45. 45.
    Josimovic-Alasevic O, Durkop H, Schwarting R, Backe E, Stein H, Diamantstein T. Ki-1 (CD30) antigen is released by Ki-1 positive tumor cells in vitro and in vivo, I: partial characterization of soluble Ki-1 antigen and detection of the antigen in cell culture super- natants and in serum by an enzyme-linked immunosorbent assay.EurJ Immunol. 1989;19:157–162.CrossRefGoogle Scholar
  46. 46.
    Hansen HP, Chiseler T, Kobarg J, Horn-Lohrens O, Havsteen B, Lemke H. A zinc metalloproteinase is responsible for the release of CD30 on human tumor cell lines.Int J Cancer. 1995;63:750–756.PubMedCrossRefGoogle Scholar
  47. 47.
    Pizzolo G, Stein H, Josimovic-Alasevic O, et al. Increased serum levels of soluble IL-2 receptor, CD30 and CD8 molecules, and gamma-interferon in angioimmunoblastic lymphadenopathy: possible pathogenetic role of immunoactivation mechanisms.Br J Haematol. 1990;75:485–488.PubMedCrossRefGoogle Scholar
  48. 48.
    Pfreundschuh M, Pohl C, Berenbeck C, et al. Detection of a soluble form of the CD30 antigen in sera of patients with lymphoma, adult T-cell leukemia and infectious mononucleosis.Int J Cancer. 1990;45:869–874.PubMedCrossRefGoogle Scholar
  49. 49.
    Pizzolo G, Vinante F, Nadali G, et al. High serum level of soluble CD30 in acute primary HIV-1 infection.Clin Exp Immunol. 1997;108:251–253.PubMedCrossRefGoogle Scholar
  50. 50.
    Dallenbach F, Josimovic-Alasevic O, Durkop H, et al. Soluble CD30 antigen in the sera of patients with adult T-cell lymphoma/ leukemia (ATL): a marker for disease activity. In: Knapp W, Dorken B, Gilks WR, et al, eds.Leukocyte Typing IV. Oxford, UK: Oxford University Press; 1989:426.Google Scholar
  51. 51.
    Nadali G, Tavecchia L, Zanolin E, et al. Serum level of the soluble form of the CD30 molecule identifies patients with Hodgkin’s disease at high risk of unfavorable outcome.Blood. 1998;91: 3011–3016.PubMedGoogle Scholar
  52. 52.
    Zinzani PL, Pileri S, Bernardi M, et al. Clinical implications of serum levels of soluble CD30 in 70 adult anaplastic large-cell lymphoma patients.J Clin Oncol. 1998;16:1532–1537.PubMedGoogle Scholar
  53. 53.
    Luigi P, Pileri S, Bendandi M, et al. Clinical implications of serum levels of soluble CD30 in 70 adult anaplastic large-cell lymphoma patients.J Clin Oncol. 1998;16:1532–1537.Google Scholar
  54. 54.
    Maggi E, Annunziato F, Manetti R, et al. Activation of HIV expression by CD30 triggering in CD4+ T cells from HIV-infected individuals.Immunity. 1995;3:251–255.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee CI, Park CG, Choi Y. T cell receptor-dependent cell death of T cell hybridomas mediated by the CD30 cytoplasmic domain in association with tumor necrosis factor receptor-associated factors.J Exp Med. 1996;183:669–674.PubMedCrossRefGoogle Scholar
  56. 56.
    Telford WG, Nam SY, Podack ER, Miller RA. CD30-regulated apoptosis in murine CD8 T cells after cessation of TCR signals.Cell Immunol. 1997;182:125–136.PubMedCrossRefGoogle Scholar
  57. 57.
    Shanebeck KD, Maliszewski CR, Kennedy MK, et al. Regulation of murine B cell growth and differentiation by CD30 ligand.Eur J Immunol. 1995;25:2147–2153.PubMedCrossRefGoogle Scholar
  58. 58.
    Bowen MA, Lee RK, Miragliotta G, Nam SY, Podack ER. Structure and expression of murine CD30 and its role in cytokine production.J Immunol. 1996;156:442–449.PubMedGoogle Scholar
  59. 59.
    Kurts C, Carbone FR, Krummel MF, Koch KM, Miller JF, Heath WR. Signaling through CD30 protects against autoimmune diabetes mediated by CD8 T cells.Nature. 1999;398:341–344.PubMedCrossRefGoogle Scholar
  60. 60.
    Cerutti A, Schaffer A, Shah S, et al. CD30 is a CD40-inducible molecule that negatively regulates CD40-mediated immunoglobulin class switching in non-antigen-selected human B cells.Immunity. 1998;9:247–256.PubMedCrossRefGoogle Scholar
  61. 61.
    Amakawa R, Hakem A, Kundig TM, et al. Impaired negative selection of T cells in Hodgkin’s disease antigen CD30-deficient mice.Cell. 1996;84:551–562.PubMedCrossRefGoogle Scholar
  62. 62.
    Gruss HJ, Ulrich D, Dower SK, Herrmann F, Brach MA. Activation of Hodgkin cells via the CD30 receptor induces autocrine secretion of interleukin 6 engaging the NF-κB transcription factor.Blood. 1996;87:2443–2449.PubMedGoogle Scholar
  63. 63.
    Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines.Blood. 1994;83:2045–2056.PubMedGoogle Scholar
  64. 64.
    Horie R, Watanabe T. CD30: expression and function in health and disease.Semin Immunol. 1998;10:457–470.PubMedCrossRefGoogle Scholar
  65. 65.
    Ghosh S, May MJ, Kopp EB. NF-kappaB and Rel proteins: evolu- tionarily conserved mediators of immune responses.Annu Rev Immunol. 1998;16:225–260.PubMedCrossRefGoogle Scholar
  66. 66.
    Karin M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex.Oncogene. 1999;18:6867–6874.PubMedCrossRefGoogle Scholar
  67. 67.
    Miyamoto S, Verma IM. Rel/NF-kappaB/I kappaB story.Adv Cancer Res. 1995;66:255–292.PubMedCrossRefGoogle Scholar
  68. 68.
    Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-κB.Ann Rev Cell Biol. 1994;10:405–455.PubMedGoogle Scholar
  69. 69.
    Chen FE, Ghosh G. Regulation of DNA binding by Rel/NF- kappaB transcription factors: structural views.Oncogene. 1999;18:6845–6852.PubMedCrossRefGoogle Scholar
  70. 70.
    Baeuerle PA, Baichwal VR. NF-kappaB as a frequent target for immunosuppressive and anti-inflammatory molecules.Adv Immunol. 1997;65:111–137.PubMedCrossRefGoogle Scholar
  71. 71.
    Barnes PJ, Karin M. Nuclear factor-κB-a pivotal transcription factor in chronic inflammatory diseases.N Engl J Med. 1997;336: 1066–1071.PubMedCrossRefGoogle Scholar
  72. 72.
    Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors.Oncogene. 1999;18:6853–6866.PubMedCrossRefGoogle Scholar
  73. 73.
    Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C. Inhibition of NF-kappaB potentiates amyloid beta-mediated neuronal apoptosis.ProcNatl Acad Sci USA. 1999;96:9409–9414.CrossRefGoogle Scholar
  74. 74.
    Korner M,Tarantino N, Debre P. Constitutive activation of NF-κB in human thymocytes.Biochem Biophys Res Commun. 1991;181: 80–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Krishnamoorthy RR, Crawford MJ, Chaturvedi MM, et al. Photo- oxidative stress down-modulates the activity of nuclear factor- kappaB via involvement of caspase-1, leading to apoptosis of pho- toreceptor cells.J Biol Chem. 1999;274:3734–3743.PubMedCrossRefGoogle Scholar
  76. 76.
    Hinz M, Loser P, Mathas S, Krappmann D, Dorken B, Scheidereit C. Constitutive NF-kappaB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of anti- apoptotic genes in Hodgkin/Reed-Sternberg cells.Blood. 2001;97: 2798–2807.PubMedCrossRefGoogle Scholar
  77. 77.
    Rayet B, Gelinas C. Aberrant rel/nfκb genes and activity in human cancer.Oncogene. 1999;18:6938–6947.PubMedCrossRefGoogle Scholar
  78. 78.
    Staratschek-Jox A, Kotkowski S, Belge G, et al. Detection of Epstein-Barr virus in Hodgkin-Reed-Sternberg cells: no evidence for the persistence of integrated viral fragments in latent membrane protein-1 (LMP-1)-negative classical Hodgkin’s disease.Am J Pathol. 2000;156:209–216.PubMedGoogle Scholar
  79. 79.
    Gires O, Zimber-Strobl U, Gonnella R, et al. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule.EMBO J. 1997;16:6131–6140.PubMedCrossRefGoogle Scholar
  80. 80.
    Izumi KM, Kieff ED. The Epstein -Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-κB.Proc Natl Acad Sci USA. 1997;94:12592–12597.PubMedCrossRefGoogle Scholar
  81. 81.
    Izumi KM, Kaye KM, Kieff ED. The Epstein-Barr virus LMP-1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation.Proc Natl Acad Sci USA. 1997;94:1447–1452.PubMedCrossRefGoogle Scholar
  82. 82.
    McFarland EDC, Izumi KM, Mosialos G. Epstein-Barr virus transformation: involvement of latent membrane protein 1-mediated activation of NF-κB.Oncogene. 1999;18:6959–6954.CrossRefGoogle Scholar
  83. 83.
    Teramoto N, Cao L, Kawasaki N, et al. Variable expression of Epstein-Barr virus latent membrane protein 1 in Reed-Sternberg cells of Hodgkin’s disease.Acta Med Okayama. 1996;50:267–270.PubMedGoogle Scholar
  84. 84.
    Fiumara P, Snell V, Li Y, Mukhopadhyay A, et al. Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines.Blood. 2001;98:2784–2790.PubMedCrossRefGoogle Scholar
  85. 85.
    Horie R, Aizawa S, Nagai M, et al. A novel domain in the CD30 cytoplasmic tail mediates NF-κB activation.Int Immunol. 1998;10: 203–210.PubMedCrossRefGoogle Scholar
  86. 86.
    Maniatis T. Catalysis by a multiprotein IκB kinase complex.Science. 1997;278:818–819.PubMedCrossRefGoogle Scholar
  87. 87.
    Gedrich RW,Gilfillan MC,Duckett CS, Van Dongen JL, Thompson CB. CD30 contains two binding sites with different specificities for members of the tumor necrosis factor receptor-associated factor family of signal transducing proteins.J Biol Chem. 1996;271: 12852–12858.PubMedCrossRefGoogle Scholar
  88. 88.
    Lee SY, Lee SY, Kandala G, Liou ML, Liou HC, Choi Y CD30/ TNF receptor-associated factor interaction: NF-kappaB activation and binding specificity.Proc Natl Acad Sci USA. 1996;93: 9699–9703.PubMedCrossRefGoogle Scholar
  89. 89.
    Aizawa S, Nakano H, Ishida T, et al. Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF2 are involved in CD30- mediated NF-κB activation.J Biol Chem. 1997;272:2042–2045.PubMedCrossRefGoogle Scholar
  90. 90.
    Boucher LM, Marengere LE, Lu Y, Thukral S, Mak TW. Binding sites of cytoplasmic effectors TRAF1,2, and 3 on CD30 and other members of the TNF receptor superfamily.Biochem Biophys Res Commun. 1997;233:592–600.PubMedCrossRefGoogle Scholar
  91. 91.
    Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB. Induction of nuclear factor κB by the CD30 receptor is mediated by TRAF1 and TRAF2.Mol Cell Biol. 1997;17:1535–1542.PubMedGoogle Scholar
  92. 92.
    Hu HM, O’Rourke K, Boguski MS, Dixit VM. A novel RING finger protein interacts with the cytoplasmic domain of CD40.J Biol Chem. 1994;269:30069–30072.PubMedGoogle Scholar
  93. 93.
    Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor.Cell. 1994;78:681–692.PubMedCrossRefGoogle Scholar
  94. 94.
    Cheng G, Cleary AM, Ye ZS, Hong DI, Lederman S, Baltimore D. Involvement of CRAF1, a relative of TRAF, in CD40 signaling.Science. 1995;267:1494–1498.PubMedCrossRefGoogle Scholar
  95. 95.
    Mosialos G, Birkenbach M,Yalamanchili R,VanArsdale T, Ware C, Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family.Cell. 1995;80:389–399.PubMedCrossRefGoogle Scholar
  96. 96.
    Regnier CH, Tomasetto C, Moog-Lutz C, et al. Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma.J Biol Chem. 1995;270:25715–25721.PubMedCrossRefGoogle Scholar
  97. 97.
    Sato T, Irie S, Reed JC. A novel member of the TRAF family of putative signal transducing proteins binds to the cytoplasmic domain of CD40.FEBS Lett. 1995;358:113–118.PubMedCrossRefGoogle Scholar
  98. 98.
    Song HY, Donner DB. Association of a RING finger protein with the cytoplasmic domain of the human type-2 tumor necrosis factor.Biochem J. 1995;309:825–829.PubMedGoogle Scholar
  99. 99.
    Nakano H, Oshima H, Chung W, et al. TRAF5, an activator of NF- κB and putative signal transducer for the lymphotoxin-beta receptor.J Biol Chem. 1996;271:14661–14664.PubMedCrossRefGoogle Scholar
  100. 100.
    Ishida TK, Tojo T, Aoki T, et al. TRAF-5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling.Proc Natl Acad Sci USA. 1996;93:9437–9442.PubMedCrossRefGoogle Scholar
  101. 101.
    Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1.Nature. 1996;383:443–446.PubMedCrossRefGoogle Scholar
  102. 102.
    Ishida T, Mizushima S, Azuma S, et al. Identification of TRAF6, a novel TRAF protein that mediates signaling from an amino-termi- nal domain of the CD40 cytoplasmic region.J Biol Chem. 1996;271: 28745–28748.PubMedCrossRefGoogle Scholar
  103. 103.
    Rothe M, Sarma V, Dixit VM, Goeddel DV. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40.Science. 1995;269:1424–1427.PubMedCrossRefGoogle Scholar
  104. 104.
    Takeuchi M, Rothe M, Goeddel DV. Anatomy of TRAF2: distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins.J Biol Chem. 1996;271: 19935–19942.PubMedCrossRefGoogle Scholar
  105. 105.
    Duckett CS, Thompson CB. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival.Genes Dev. 1997;11:2810–2821.PubMedCrossRefGoogle Scholar
  106. 106.
    Grell M, Zimmermann G, Gottfried E, et al. Induction of cell death by tumor necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-anchored TNF.EMBO J. 1999;18:3034–3043.PubMedCrossRefGoogle Scholar
  107. 107.
    Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling.Science. 2000;288:2351–2354.PubMedCrossRefGoogle Scholar
  108. 108.
    Papoff G, Hausler P, Eramo A, et al. Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor.J Biol Chem. 1999;274:38241–38250.PubMedCrossRefGoogle Scholar
  109. 109.
    Siegel RM, Frederiksen JK, Zacharias DA, et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations.Science. 2000;288:2354–2357.PubMedCrossRefGoogle Scholar
  110. 110.
    Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL.Science. 1997;277:815–818.PubMedCrossRefGoogle Scholar
  111. 111.
    Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL- induced apoptosis by a family of signaling and decoy receptors.Science. 1997;277:818–821.PubMedCrossRefGoogle Scholar
  112. 112.
    Izban KF, Ergin M, Martinez RL, Alkan S. Expression of the tumor necrosis factor receptor-associated factors (TRAFs) 1 and 2 is a characteristic feature of Hodgkin and Reed-Sternberg cells.Mod Pathol. 2000;13:1324–1331.PubMedCrossRefGoogle Scholar
  113. 113.
    Durkop H, Foss HD, Demel G, Klotzbach H, Hahn C, Stein H. Tumor necrosis factor receptor-associated factor 1 is overexpressed in Reed-Sternberg cells of Hodgkin’s disease and Epstein-Barr virus-transformed lymphoid cells.Blood. 1999;93:617–623.PubMedGoogle Scholar
  114. 114.
    Arch RH, Gedrich RW, Thompson CB. Translocation of TRAF proteins regulates apoptotic threshold of cells.Biochem Biophys Res Commun. 2000;272:936–945.PubMedCrossRefGoogle Scholar
  115. 115.
    Zapata JM, Krajewska M, Krajewski S, et al. TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies.J Immunol. 2000;165:5084–5096.PubMedGoogle Scholar
  116. 116.
    Horie R, Watanabe T, Watanabe M, et al. Cytoplasmic aggregation of TRAF2 and TRAF5 proteins in the Hodgkin-Reed-Sternberg cells.Am J Pathol. 2002;160:1647–1654.PubMedGoogle Scholar
  117. 117.
    Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells.J Clin Invest. 1997;100: 2961–2969.PubMedCrossRefGoogle Scholar
  118. 118.
    Kapp U, Yeh WC, Patterson B, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells.J Exp Med. 1999;189:1939–1946.PubMedCrossRefGoogle Scholar
  119. 119.
    Croager EJ, Muir TM, Abraham LJ. Analysis of human and mouse promoter region of the non-Hodgkin’s lymphoma-associated CD30 gene.J Interferon Cytokine Res. 1998;18:915–920.PubMedGoogle Scholar
  120. 120.
    Durkop H, Oberbarnscheidt M, Latza U, et al. The restricted expression pattern of the Hodgkin’s lymphoma-associated cytokine receptor CD30 is regulated by a minimal promoter.J Pathol. 2000;192:182–193.PubMedCrossRefGoogle Scholar
  121. 121.
    Durkop H, Oberbarnscheidt M, Latza U, et al. Structure of the Hodgkin’s lymphoma-associated human CD30 gene and the influence of a microsatellite region on its expression in CD30 (+) cell lines.Biochim Biophys Acta. 2001;1519:185–191.PubMedGoogle Scholar
  122. 122.
    Croager EJ, Gout AM, Abraham LJ. Involvement of Sp1 and microsatellite repressor sequences in the transcriptional control of the human CD30 gene.Am J Pathol. 2000;156:1723–1731.PubMedGoogle Scholar
  123. 123.
    Kadin ME. Regulation of CD30 antigen expression and its potential significance for human disease.Am J Pathol. 2000;156: 1479–1984.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2003

Authors and Affiliations

  • Ryouichi Horie
    • 1
    • 2
  • Masaaki Higashihara
    • 1
  • Toshiki Watanabe
    • 2
  1. 1.Fourth Department of Internal MedicineKitasato University, School of MedicineKanagawaJapan
  2. 2.Division of Pathology, Department of Cancer Research, The Institute of Medical ScienceThe University of TokyoTokyoJapan

Personalised recommendations