International Journal of Hematology

, Volume 75, Issue 4, pp 357–362 | Cite as

Signal Transduction—Associated and Cell Activation—Linked Antigens Expressed in Human Mast Cells

  • Peter Valent
  • Minoo Ghannadan
  • Alexander W. Hauswirth
  • Gerit-Holger Schernthaner
  • Wolfgang R. Sperr
  • Michel Arock
Progress in Hematology


Mast cells (MCs) are multifunctional hematopoietic effector cells that produce and release an array of biologically active mediator substances. Growth and functions of MCs are regulated by cytokines, other extracellular factors, surface and cytoplasmic receptors, oncogene products, and a complex network of signal transduction cascades. Key regulators of differentiation of MCs appear to be stem cell factor (SCF) and its tyrosine kinase receptor KIT (c-kit proto-oncogene product=CD117), downstream-acting elements, and the mi transcription factor (MITF). Signaling through KIT is negatively regulated by the signal regulatory protein (SIRP)-α (CD172a)-SHP-1-pathway that is disrupted in neoplastic MCs in MC proliferative disorders. Both KIT and FcεRI are involved in MC activation and mediator release. Activation of MCs through FcεRI is associated with increased expression of activation-linked membrane antigens as well as with signaling events involving Lyn and Syk kinases, the phosphatidylinositol-3—kinase-pathway, Ras pathway, and the phospholipase C—protein kinase C pathway. A similar network of signaling is found in SCF-activated MCs. The current article gives an overview on signal transduction—associated and activation-linked antigens expressed in human MCs. Wherever possible the functional implication of signaling pathways and antigen expression are discussed.

Key words



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valent P, Bettelheim P.Cell surface structures on human basophils and mast cells: biochemical and functional characterization.Adv Immunol. 1992;52:333–423.CrossRefPubMedGoogle Scholar
  2. 2.
    Valent P, Schernthaner GH, Sperr WR, et al.Variable expression of activation-linked surface antigens on human mast cells in health and disease.Immunol Rev. 2001;179:74–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Galli SJ. Biology of disease: new insights into “the riddle of the mast cells”: microenvironmental regulation of mast cell development and phenotypic heterogeneity.Lab Invest. 1990;62:5–33.PubMedGoogle Scholar
  4. 4.
    Valent P. The riddle of the mast cell: c-kit ligand as missing link?Immunol Today. 1994;15:111–114.CrossRefPubMedGoogle Scholar
  5. 5.
    Galli SJ, Tsai M, Wershil BK. The c-kit receptor, stem cell factor, and mast cells: what each is teaching us about the others.Am J Pathol. 1993;142:965–974.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ishizaka T, Ishizaka K. Activation of mast cells for mediator release through IgE receptors.Prog Allergy. 1984;34:188–235.PubMedGoogle Scholar
  7. 7.
    Bischoff SC, Dahinden CA. c-kit ligand: a unique potentiator of mediator release by human lung mast cells.J Exp Med. 1992;175: 237–244.CrossRefPubMedGoogle Scholar
  8. 8.
    Tsujimura T, Morii E, Nozaki M, et al. Involvement of transcription factor encoded by the mi locus in the expression of c-kit receptor tyrosine kinase in cultured mast cells of mice.Blood. 1996;88: 1225–1233.PubMedGoogle Scholar
  9. 9.
    Kitamura Y, Morii E, Jippo T, Ito A. mi-transcription factor as a regulator of mast cell differentiation.Int J Hematol. 2000;71: 197–202.PubMedGoogle Scholar
  10. 10.
    Wimazal F, Walchshofer S, Baghestanian M, et al. Detection ofmi transcription factor (MITF) mRNA in a case of myelodysplastic syndrome and bone marrow mastocytosis.Wien Klin Wochenschr. 1998;110:79–88.PubMedGoogle Scholar
  11. 11.
    Sillaber Ch, Bevec D, Ashman LK, et al. IL-4 regulates c-kit gene product expression in human myeloid-and mast cell progenitors.J Immunol. 1991;147:4224–4228.PubMedGoogle Scholar
  12. 12.
    Sillaber C, Sperr WR, Agis H, Spanblöchl E, Lechner K, Valent P. Inhibition of stem cell factor dependent formation of human mast cells by interleukin-3 and interleukin-4.Int Arch Allergy Immunol. 1994;105:264–268.CrossRefPubMedGoogle Scholar
  13. 13.
    Yanagida M, Fukamachi H, Ohgami K, et al. Effects of T-helper 2- type cytokines, interleukin-3 (IL-3), IL-4, IL-5, and IL-6 on survival of cultured human mast cells.Blood. 1995;86:3705–3714.PubMedGoogle Scholar
  14. 14.
    Baghestanian M, Agis H, Bevec D, et al. Stem cell factor-induced downregulation of c-kit in human lung mast cells and HMC-1 mast cells.Exp Hematol. 1996;24:1377–1386.PubMedGoogle Scholar
  15. 15.
    Rottem M, Okada T, Goff JP, Metcalfe DD. Mast cells cultured from peripheral blood of normal donors and patients with masto- cytosis originate from a CD34+/FceRI cell population.Blood. 1994;84:2489–2496.PubMedGoogle Scholar
  16. 16.
    Xia HZ, Du Z, Craig S, et al. Effect of recombinant human IL-4 on tryptase, chymase, and Fc epsilon receptor type I expression in recombinant human stem cell factor-dependent fetal liver-derived human mast cells.J Immunol. 1997;159:2911–2921.PubMedGoogle Scholar
  17. 17.
    Toru H, Ra C, Nonoyama S, Suzuki K, Yata J, Nakahata T. Induction of the high affinity IgE receptor (Fc epsilon RI) on human mast cells by IL-4.Int Immunol. 1996;8:1367–1373.CrossRefPubMedGoogle Scholar
  18. 18.
    Furuichi K, Rivera J, Isersky C. The receptor for immunoglobulin E on rat basophilic leukemia cells: effects of ligand binding on receptor expression.Proc Natl Acad Sci U S A. 1985;82:1522–1525.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yamaguchi M, Lantz CS, Oettgen HC, et al. IgE enhances mouse mast cell Fc(epsilon)RI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions.J Exp Med. 1997;185:663–672.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Malveaux FJ, Conroy MC, Adkinson NF, Lichtenstein LM. IgE receptors on human basophils: relationship to serum IgE concentrations.J Clin Invest. 1978;62:176–181.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sattler M, Salgia R, Shrikhande G, et al. Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-kit, phosphatidylinositol 3-kinase, and p120(CBL).J Biol Chem. 1997;272:10248–10253.CrossRefPubMedGoogle Scholar
  22. 22.
    Tauchi T, Feng GS, Marshall MS, et al. The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells.J Biol Chem. 1994;269:25206–25211.PubMedGoogle Scholar
  23. 23.
    Blume-Jensen P, Ronnstrand L, Gout I, Waterfield MD, Heldin CH. Modulation of Kit/stem cell factor receptor-induced signaling by protein kinase C.J Biol Chem. 1994;269:21793–21802.PubMedGoogle Scholar
  24. 24.
    Taylor ML, Metcalfe DD. Kit signal transduction.Hematol Oncol North Am. 2000;14:517–535.CrossRefGoogle Scholar
  25. 25.
    Boissan M, Feger F, Guillosson JJ, Arock M. c-Kit and c-kit mutations in mastocytosis and other hematologic disorders.J Leukoc Biol. 2000;67:135–148.CrossRefPubMedGoogle Scholar
  26. 26.
    O’Laughlin-Bunner B, Radosevic N, Taylor ML, et al. Lyn is required for normal stem cell factor-induced proliferation and chemotaxis of primary hematopoietic cells.Blood. 2001;98:343–350.CrossRefPubMedGoogle Scholar
  27. 27.
    Ishizuka T, Chayama K, Takeda K, et al. Mitogen-activated protein kinase activation through Fce receptor I and stem cell factor receptor is differentially regulated by phosphatidylinositol 3-kinase and calcineurin in mouse bone marrow-derived mast cells.J Immunol. 1999;162:2087–2094.PubMedGoogle Scholar
  28. 28.
    Huber M, Helgason CD, Scheid MP, Duronio V, Humphries RK, Krystal G. Targeted disruption of SHIP leads to Steel factor- induced degranulation of mast cells.EMBO J. 1998;17:7311–7319.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R. Socs-1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation.EMBO J. 1999;18: 904–915.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kharitoenkov A, Chen Z, Sures I, Wang H, Schilling J, Ullrich A. A family of receptors that inhibit signalling through tyrosine kinase receptors.Nature. 1997;386:181–186.CrossRefGoogle Scholar
  31. 31.
    Lienard H, Bruhns P, Malbec O, Fridman WH, Daeron M. Signal regulatory proteins negatively regulate immunoreceptor-dependent cell activation.J Biol Chem. 1999;274:32493–32499.CrossRefPubMedGoogle Scholar
  32. 32.
    Ghannadan M, Hauswirth A, Schernthaner G-H, et al. Detection of novel CD antigens on the surface of human mast cells and basophils. Int Arch Allergy Immunol. In press.Google Scholar
  33. 33.
    Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Simonovitch KA. SHP-1 binds to and negatively modulates the c-kit receptor by interacting with Tyrosine 569 in the c-Kit juxtamembrane domain.Mol Cell Biol. 1998;18:2089–2099.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Piao X, Paulson R, van der Geer P, Pawson T, Bernstein A. Oncogenic mutation in the Kit receptor tyrosine kinase alters substrate specificity and induces degradation of the protein tyrosine phosphatase SHP-1.Proc Natl Acad Sci U S A. 1996;93:14665–14669.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nagata H, Worobec AS, Oh CK, et al. Identification of a point mutation in the catalytic domain of the protooncogenec-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder.Proc Natl Acad Sci U S A. 1995;92:10560–10564.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Longley BJ, Tyrrell L, Lu SZ, et al. Somatic c-kit activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm.Nat Genet. 1996; 12:312–314.CrossRefPubMedGoogle Scholar
  37. 37.
    Longley BJ, Metcalfe DD, Tharp M, et al. Activating and dominant inactivating c-kit catalytic domain mutations in distinct forms of human mastocytosis.Proc Natl Acad Sci U S A. 1999;96:1609–1614.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Huber M, Helgason CD, Damen JE, Liu L, Humphries RK, Krystal G. The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation.Proc Natl Acad Sci U S A. 1998;95:11330–11335.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kinet JP. The high affinity IgE receptor (FcεRI): from physiology to pathology.Ann Rev Immunol. 1999;17:931–972.CrossRefGoogle Scholar
  40. 40.
    Ishizaka T, Conrad DH, Schulman ES, Sterk AR, Ishizaka K. Biochemical analysis of initial triggering events of IgE-mediated histamine release from human lung mast cells.J Immunol. 1983;130: 2357–2362.PubMedGoogle Scholar
  41. 41.
    Ishizaka T, Foreman JC, Sterk AR, Ishizaka K. Induction of calcium flux across the rat mast cell membrane by bridging IgE receptors.Proc Natl Acad Sci U S A. 1979;76:5858–5862.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dvorak AM, Massey W, Warner J, Kissell S, Kagey-Sobotka A, Lichtenstein LM. IgE-mediated anaphylactic degranulation of isolated human skin mast cells.Blood. 1991;77:569–578.PubMedGoogle Scholar
  43. 43.
    Bühring HJ, Seiffert M, Giesert C, et al. The basophil activation marker defined by antibody 97A6 is identical with the ecto-nucleotide pyrophosphatase/phosphodiesterase 3 (E-NPP3).Blood. 2001; 97:3303–3306.CrossRefPubMedGoogle Scholar
  44. 44.
    Bühring HJ, Simmons PJ, Pudney M, et al. The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors.Blood. 1999;94:2343–2356.PubMedGoogle Scholar
  45. 45.
    Fleming TJ, Donnadieu E,Song CH,Van Laethem F, Galli SJ, Kinet JP. Negative regulation of FceRI-mediated degranulation by CD81.J Exp Med. 1997;186:1307–1314.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ghannadan M, Baghestanian M,Wimazal F, et al. Phenotypic characterization of human skin mast cells by combined staining for toluidine blue and CD antibodies.J Invest Dermatol. 1998;111: 689–695.CrossRefPubMedGoogle Scholar
  47. 47.
    Eiseman E, Bolen JB. Engagement of the high affinity IgE receptor activates src protein-related tyrosine kinases.Nature. 1992;355: 78–80.CrossRefPubMedGoogle Scholar
  48. 48.
    White HR, Pluznik DH, Ishizaka K, Ishizaka T. Antigen-induced increase in protein kinase C activity in plasma membrane of mast cells.Proc Natl Acad Sci U S A. 1985;82:8193–8197.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Benhamou M, Ryba NJ, Kihara H, Nishikata H, Siraganian RP. Protein-tyrosine kinase p72syk in high affinity IgE receptor signaling: identification as component of pp72 and association with the receptor gamma chain after receptor aggregation.J Biol Chem. 1993;268:23318–23324.PubMedGoogle Scholar
  50. 50.
    Kihara H, Siraganian RP. Src homology 2 domains Syk and Lyn bind to tyrosine-phosphorylated subunits of the high affinity IgE receptor.J Biol Chem. 1994;269:22427–22432.PubMedGoogle Scholar
  51. 51.
    Barker SA, Lujan D, Wilson BS. Multiple roles in PI 3-kinase in the regulation of PLCgamma activity and Ca2+ mobilization in antigen-stimulated mast cells.J Lekoc Biol. 1999;65:321–329.CrossRefGoogle Scholar
  52. 52.
    Beaven MA, Metzger H. Signal transduction of by Fc receptors: the Fc epsilon RI case.Immunol Today. 1993;14:222–226.CrossRefPubMedGoogle Scholar
  53. 53.
    Nadler MJ, Matthews SA, Turner H, Kinet JP. Signal transduction by the high-affinity immunoglobulin E receptor Fc epsilon RI.Adv Immunol. 2000;76:325–355.CrossRefPubMedGoogle Scholar
  54. 54.
    Graham TE, Pfeiffer JR, Lee RJ, et al. MEK and ERK activation in ras-disabled RBL-2H3 mast cells and novel roles for geranyl- geranylated and farnesylated proteins in Fc epsilonRI-mediated signaling.J Immunol. 1998;161:6733–6744.PubMedGoogle Scholar
  55. 55.
    Jouvin MH, Adamczewski M, Numerof R, Letourneur O, Valle A, Kinet JP. Differential control of the tyrosine kinases Lyn and Syk by the two signaling chains of the high affinity immunoglobulin E receptor.J Biol Chem. 1994;269:5918–5925.PubMedGoogle Scholar
  56. 56.
    Zhang J, Siraganian RP. CD45 is essential for FcεRI signaling by ZAP70, but not Syk, in Syk-negative mast cells.J Immunol. 1999; 63:2508–2516.Google Scholar
  57. 57.
    Zhang J, Berenstein EH, Evans RL, Siraganian RP. Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells.J Exp Med. 1996;184:71–79.CrossRefPubMedGoogle Scholar
  58. 58.
    Kepley CL, Youssef L, Andrews RP, Wilson BS, Oliver JM. Multiple defects in Fc epsilon RI signaling in Syk-deficient nonreleaser basophils and IL-3-induced recovery of Syk expression and secretion.J Immunol. 2000;165:5913–5920.CrossRefPubMedGoogle Scholar
  59. 59.
    Kimura T, Sakamoto H,Appella E, Siraganian RP. The negative signaling molecule SH2 domain-containing inositol-polyphosphate 5- phosphatase (SHIP) binds to the tyrosine-phosphorylated β subunit of the high affinity IgE receptor.J Biol Chem. 1997;272:13991–13996.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Peter Valent
    • 1
  • Minoo Ghannadan
    • 1
  • Alexander W. Hauswirth
    • 1
  • Gerit-Holger Schernthaner
    • 1
  • Wolfgang R. Sperr
    • 1
  • Michel Arock
    • 2
  1. 1.Department of Internal Medicine I, Division of Hematology and HemostaseologyThe University of ViennaViennaAustria
  2. 2.Laboratoire d’Hématologie Cellulaire et Moléculaire, Faculté de PharmacieParisFrance

Personalised recommendations