International Journal of Hematology

, Volume 75, Issue 3, pp 246–256

Angiogenesis in Hematologic Malignancies and Its Clinical Implications

Review Article


Angiogenesis is defined as a neoformation of blood vessels of capillary origin. Hematopoiesis is closely linked with angiogenesis, for they share a common ancestor, the hemangioblast. Although it is well established that growth in solid tumors is dependent on angiogenesis, its role in hematologic malignancies has not yet been clarified. In this review, the direct evidence, ie, increased microvessel density, and the indirect evidence, ie, elevated level of angiogenic factors or overexpression of messenger RNA or protein of angiogenic factors, for and against the role of angiogenesis in the development and progression of hematologic malignancies are presented.

Key words

Angiogenesis Hematopoiesis Prognosis Angiogenic factor Treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Risau W. Mechanisms of angiogenesis.Nature. 1997;386:671–674.PubMedGoogle Scholar
  2. 2.
    Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation.Nature. 2000;407:242–248.PubMedGoogle Scholar
  3. 3.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases.Nature. 2000;407:249–257.PubMedGoogle Scholar
  4. 4.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.Cell. 1996;86:353–364.PubMedGoogle Scholar
  5. 5.
    Han ZC, Liu Y. Angiogenesis: state of the art.Int J Hematol. 1999;70:68–82.PubMedGoogle Scholar
  6. 6.
    Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis.J Biol Chem. 2000;275:1521–1524.PubMedGoogle Scholar
  7. 7.
    Gastl G, Hermann T, Steurer M, et al. Angiogenesis as a target for tumor treatment.Oncology. 1997;54:177–184.PubMedCrossRefGoogle Scholar
  8. 8.
    Folkman J. Clinical applications of research on angiogenesis.N Engl J Med. 1995;333:1757–1763.PubMedGoogle Scholar
  9. 9.
    Bussolino F, Di Renzo MF, Ziche M, et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth.J Cell Biol. 1992;119:629–641.PubMedGoogle Scholar
  10. 10.
    Grant DS, Kleinman HK, Goldberg ID, et al. Scatter factor induces blood vessel formation in vivo.Proc Natl Acad Sci U S A. 1993;90:1937–1941.PubMedGoogle Scholar
  11. 11.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen.Science. 1989;246:1306–1309.PubMedGoogle Scholar
  12. 12.
    Olofsson B, Korpelainen E, Pepper MS, et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells.Proc Natl Acad Sci U S A. 1998;95:11709–11714.PubMedGoogle Scholar
  13. 13.
    Cao Y, Linden P, Farnebo J, et al. Vascular endothelial growth factor C induces angiogenesis in vivo.Proc Natl Acad Sci U S A. 1998;95:14389–14394.PubMedGoogle Scholar
  14. 14.
    Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4).Proc Natl Acad Sci U S A. 1998;95:548–553.PubMedGoogle Scholar
  15. 15.
    Cameliet P. Mechanisms of angiogenesis and arteriogenesis.Nat Med. 2000;6:389–395.Google Scholar
  16. 16.
    Nelson NJ. Inhibitors of angiogenesis enter phase III testing.J Natl Cancer Inst. 1998;90:960–963.PubMedGoogle Scholar
  17. 17.
    Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis.Science. 1997;275:964–967.PubMedGoogle Scholar
  18. 18.
    Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells.Development. 1998;125:725–732.PubMedGoogle Scholar
  19. 19.
    Choi K. Hemangioblast development and regulation.Biochem Cell Biol. 1998;76:947–956.PubMedGoogle Scholar
  20. 20.
    Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogene-sis in physiological and pathological neovascularization.Circ Res. 1999;85:221–228.PubMedGoogle Scholar
  21. 21.
    Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells.EMBO J. 1999;18:3964–3972.PubMedGoogle Scholar
  22. 22.
    Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGF-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors.Blood. 2000;95:952–958.PubMedGoogle Scholar
  23. 23.
    Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells outgrowth from blood.J Clin Invest. 2000;105:71–77.PubMedGoogle Scholar
  24. 24.
    Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells.Blood. 1998;92:362–367.PubMedGoogle Scholar
  25. 25.
    Schuh AC, Faloon P, Hu QL, Bhimani M, Choi K. In vitro hemato-poietic and endothelial potential of flk-1 (-/-) embryonic stem cells and embryos.Proc Natl Acad Sci U S A. 1999;96:2159–2164.PubMedGoogle Scholar
  26. 26.
    Fina L, Molgaard HV, Robertson D, et al. Expression of the CD34 gene in vascular endothelial cells.Blood. 1990;75:2417–2426.PubMedGoogle Scholar
  27. 27.
    Ziegler BL, Valtieri M, Almeida Porada G, et al. KDR receptor: a key marker defining hematopoietic stem cells.Science. 1999;285:1553–1558.PubMedGoogle Scholar
  28. 28.
    Ito A, Nomura S, Hirota S, Suda J, Suda T, Kitamura Y. Enhanced expression of CD34 messenger RNA by developing endothelial cells of mice.Lab Invest. 1995;72:532–538.PubMedGoogle Scholar
  29. 29.
    Young PE, Baumhueter S, Lasky LA. The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development.Blood. 1995;85:96–105.PubMedGoogle Scholar
  30. 30.
    Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood island formation and vasculogenesis in FLK-1 deficient mice.Nature. 1995;376:62–66.PubMedGoogle Scholar
  31. 31.
    Shalaby F, Ho J, Stanford WL, et al. A requirement for Flk-1 in primitive and definitive hematopoiesis and vasculogenesis.Cell. 1997;89:981–990.PubMedGoogle Scholar
  32. 32.
    Fong GH, Rossant J, Gertsenstein M, Brietman ML. Role of the FLT-1 receptor kinase in regulating the assembly of vascular endothelium.Nature. 1995;376:66–70.PubMedGoogle Scholar
  33. 33.
    Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation.Nature. 1995;376:70–74.PubMedGoogle Scholar
  34. 34.
    Rafii S, Mohle R, Shapiro F, Frey BM, Moore MAS. Regulation of hematopoiesis by microvascular endothelium.Leuk Lymphoma. 1997;27:375–386.PubMedGoogle Scholar
  35. 35.
    Imai K, Kobayashi M, Wang J, et al. Selective transendothelial migration of hematopoietic progenitor cells: a role in homing of progenitor cells.Blood. 1999;93:149–156.PubMedGoogle Scholar
  36. 36.
    Solanilla A, Grosset C, Lemercier C, et al. Expression of Flt-ligand by the endothelial cell.Leukemia. 2000;14:153–162.PubMedGoogle Scholar
  37. 37.
    Bikfalvi A, Han ZC. Angiogenic factors are hematopoietic growth factors and vice versa.Leukemia. 1994;8:523–529.PubMedGoogle Scholar
  38. 38.
    Ribatti D, Presta M, Vacca A, et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo.Blood. 1999;93:2627–2636.PubMedGoogle Scholar
  39. 39.
    Tordjman R, Delaire S, Plouet J, et al. Erythroblasts are a source of angiogenic factors.Blood. 2001;97:1968–1974.PubMedGoogle Scholar
  40. 40.
    Pelletier L, Regnard J, Fellmann D, Charbord P. An in vitro model for the study of human bone marrow angiogenesis: role of hemato-poietic cytokines.Lab Invest. 2000;80:501–511.PubMedGoogle Scholar
  41. 41.
    Broxmeyer HE, Cooper S, Li ZH, et al. Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor.Int J Hematol. 1995;62:203–215.PubMedGoogle Scholar
  42. 42.
    Bautz F, Rafii S, Kanz L, Möhle R. Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hemato-poietic progenitor cells: Possible role in the hematopoietic microenvironment.Exp Hematol. 2000;28:700–706.PubMedGoogle Scholar
  43. 43.
    Takakura N, Watanabe T, Suenobu S, et al. A role for hematopoietic stem cells in promoting angiogenesis.Cell. 2000;102:199–209.PubMedGoogle Scholar
  44. 44.
    Hamada K, Oike Y, Takakura N, et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis.Blood. 2000;96:3793–3800.PubMedGoogle Scholar
  45. 45.
    Zhang W, Stoica G, Tasca SI, Kelly KA, Meininger CJ. Modulation of tumor angiogenesis by stem cell factor.Cancer Res. 2000;60:6757–6762.PubMedGoogle Scholar
  46. 46.
    Brizzi MF, Battaglia E, Montrucchio G, et al. Thrombopoietin stimulates endothelial cell motility and neoangiogenesis by a platelet-activating factor-dependent mechanism.Circ Res. 1999;84:785–796.PubMedGoogle Scholar
  47. 47.
    Crisa L, Cirulli V, Smith KA, Ellisman MH, Torbett BE, Salomon DR. Human cord blood progenitors sustain thymic T-cell development and a novel form of angiogenesis.Blood. 2000;94:3928–3940.Google Scholar
  48. 48.
    Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation.Cancer Res. 1995;55:5687–5692.PubMedGoogle Scholar
  49. 49.
    Ratajczak MZ, Ratajczak J, Machalinski B, et al. Role of vascular endothelial growth factor (VEGF) and placenta-derived growth factor (PIGF) in regulating human haemopoietic cell growth.Br J Haematol. 1998;103:969–979.PubMedGoogle Scholar
  50. 50.
    Hattori K, Dias S, Heissig B, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells.J Exp Med. 2001;193:1005–1014.PubMedGoogle Scholar
  51. 51.
    Wartiovaara U, Salven P, Mikkola H, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation.Thromb Haemost. 1998;80:171–175.PubMedGoogle Scholar
  52. 52.
    Mohle R, Green D, Moore MAS, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothe-lial growth factor by human megakaryocytes and platelets.Proc Natl Acad Sci U S A. 1997;94:663–668.PubMedGoogle Scholar
  53. 53.
    Villars F, Bordenave L, Bareille R, Amedee J. Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF?J Cell Biochem. 2000;79:672–685.PubMedGoogle Scholar
  54. 54.
    Ikehara S. Role of hepatocyte growth factor in hemopoiesis.Leuk Lymphoma. 1996;23:297–303.PubMedGoogle Scholar
  55. 55.
    Nishino T, Hisha H, Nishino N, Adachi M, Ikehara S. Hepatocyte growth factor as a hematopoietic regulator.Blood. 1995;85:3093–3100.PubMedGoogle Scholar
  56. 56.
    Takai K, Hara J, Matsumoto K, et al. Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis.Blood. 1997;89:1560–1565.PubMedGoogle Scholar
  57. 57.
    DeCarvalho S. In vitro angiogenic activity of RNA from leukemic lymphocytes.Angiology. 1978;29:497–505.PubMedGoogle Scholar
  58. 58.
    Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folk-man J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers.J Natl Cancer Inst. 1994;86:356–361.PubMedGoogle Scholar
  59. 59.
    Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia.Am J Pathol. 1997;150:815–821.PubMedGoogle Scholar
  60. 60.
    Schneider P, Jerome MV, Soria PC, Vannier JP. The role of angio-genesis in leukemia proliferation.Am J Pathol. 1999;155:1007–1009.PubMedGoogle Scholar
  61. 61.
    Vacca A, Ribatti D, Iurlaro M, et al. Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis.Int J Clin Lab Res. 1998;28:55–68.PubMedGoogle Scholar
  62. 62.
    Bellamy WT, Richter L, Frutiger Y, Grogan TM. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies.Cancer Res. 1999;59:728–733.PubMedGoogle Scholar
  63. 63.
    Fiedler W, Graeven U, Ergun S, et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia.Blood. 1997;89:1870–1875.PubMedGoogle Scholar
  64. 64.
    Fiedler W, Graeven U, Ergun S, et al. Expression of FLT4 and its ligand VEGF-C in acute myeloid leukemia.Leukemia. 1997;11:1234–1237.Google Scholar
  65. 65.
    Hayashibara T, Fujimoto T, Miyanishi T, et al. Vascular endothelial growth factor at high plasma levels is associated with extranodal involvement in adult T cell leukemia patients.Leukemia. 1999;13:1634–1635.PubMedGoogle Scholar
  66. 66.
    Aguayo A, Estev E, Kantarjian H, et al. Cellular vascular endothe-lial growth factor is a predictor of outcome in patients with acute myeloid leukemia.Blood. 1999;94:3717–3721.PubMedGoogle Scholar
  67. 67.
    Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angio-genesis in patients with acute myeloid leukemia.Blood. 2000;95:309–313.PubMedGoogle Scholar
  68. 68.
    Padro T, Ruiz S, Bieker R, et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia.Blood. 2000;95:2637–2644.PubMedGoogle Scholar
  69. 69.
    Aguayo A, Kantarjian H, Manshouri T, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes.Blood. 2000;96:2240–2245.PubMedGoogle Scholar
  70. 70.
    Dias S, Hattori K, Zhu Z, et al. Autocrine stimulation of VEGF-2 activates human leukemic cell growth and migration.J Clin Invest. 2000;106:511–521.PubMedGoogle Scholar
  71. 71.
    Fusetti L, Pruneri G, Gobbi A, et al. Human myeloid and lymphoid malignancies in the non-obese diabetic/severe combined immunodeficiency mouse model: frequency of apoptotic cells in solid tumors and efficiency and speed of engraftment correlate with vascular endothelial growth factor production.Cancer Res. 2000;60:2527–2534.PubMedGoogle Scholar
  72. 72.
    Foss B, Mentzoni L, Bruserud O. Effects of vascular endothelial growth factor on acute myelogenous leukemia blasts.J Hematother Stem Cell Res. 2001;10:81–93.PubMedGoogle Scholar
  73. 73.
    Molica S, Vitelli G, Levato D, Gandolfo GM, Liso V. Increased serum levels of vascular endothelial growth factor predict risk of progression in early B-cell chronic lymphocytic leukaemia.Br J Haematol. 1999;107:605–610.PubMedGoogle Scholar
  74. 74.
    Chen H, Treweeke AT, West DC, et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells.Blood. 2000;96:3181–3187.PubMedGoogle Scholar
  75. 75.
    Kini AR, Kay NE, Peterson LC. Increased bone marrow angiogen-esis in B cell chronic lymphocytic leukemia.Leukemia. 2000;14:1414–1418.PubMedGoogle Scholar
  76. 76.
    Aguayo A, O’Brien S, Keating M, et al. Clinical relevance of intra-cellular vascular endothelial growth factor levels in B-cell chronic lymphocytic leukemia.Blood. 2000;96:768–770.PubMedGoogle Scholar
  77. 77.
    Ferrajoli A, Manshouri T, Estrov Z, et al. High levels of vascular endothelial growth factor receptor-2 correlate with shortened survival in chronic lymphocytic leukemia.Clin Cancer Res. 2001;7:795–799.PubMedGoogle Scholar
  78. 78.
    Aguayo A, Manshouri T, O’Brien S, et al. Clinical relevance of Flt1 and Tie1 angiogenesis receptors expression in B-cell chronic lym-phocytic leukemia (CLL).Leuk Res. 2001;25:279–285.PubMedGoogle Scholar
  79. 79.
    Krejci P, Dvorak D, Krahulcova E, et al. FGF-2 abnormalities in B cell chronic lymphocytic and chronic myeloid leukemias.Leukemia. 2001;15:228–237.PubMedGoogle Scholar
  80. 80.
    Nakamura S, Gohda E, Matsuo Y, Yamamoto I, Minowada J. Significant amount of hepatocyte growth factor detected in blood and bone marrow plasma of leukemia patients.Br J Haematol. 1994;87:640–642.PubMedGoogle Scholar
  81. 81.
    Hino M, Inaba M, Goto H, et al. Hepatocyte growth factor levels in bone marrow plasma of patients with leukaemia and its gene expression in leukaemic blast cells.Br J Cancer. 1996;73:119–123.PubMedGoogle Scholar
  82. 82.
    Hjorth-Hansen H, Seidel C, Lamvik J, Borset M, Sundan A, Waage A. Elevated serum concentrations of hepatocyte growth factor in acute myelocytic leukemia.Eur J Haematol. 1999;62:129–134.PubMedGoogle Scholar
  83. 83.
    Pons E, Uphoff CC, Drexler HG. Expression of hepatocyte growth factor and its receptor c-met in human leukemia-lymphoma cell lines.Leuk Res. 1998;22:797–804.PubMedGoogle Scholar
  84. 84.
    Weimar IS, Voermans C, Bourhis JH, et al. Hepatocyte growth factor/scatter factor (HGF/SF) affects proliferation and migration of myeloid leukemic cells.Leukemia. 1998;12:1195–1203.PubMedGoogle Scholar
  85. 85.
    Jucker M, Gunther A, Gradl G, et al. The Met/hepatocyte growth factor receptor (HGFR) gene is overexpressed in some cases of human leukemia and lymphoma.Leuk Res. 1994;18:7–16.PubMedGoogle Scholar
  86. 86.
    Katoh O, Takahashi T, Oguri T, Kuramoto K, Watanabe H. Vascular endothelial growth factor inhibits apoptotic death in hemato-poietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor.Cancer Res. 1998;58:5565–5569.PubMedGoogle Scholar
  87. 87.
    Massova I, Khotra LP, Fridman R, Mahashery S. Matrix metallo-proteinases: structures, evolution, and diversification.FASEB J. 1998;12:1075–1095.PubMedGoogle Scholar
  88. 88.
    Morgunova E, Tuuttila A, Bergmann U, et al. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed.Science. 1999;284:1667–1670.PubMedGoogle Scholar
  89. 89.
    Stetler-Stevenson WG, Hewitt R, Corcoran M. Matrix metallopro-teinases and tumor invasion: from correlation and causality to the clinic.Semin Cancer Biol. 1996;7:47–154.Google Scholar
  90. 90.
    Janowska-Wieczorek A, Marquez LA, Matsuzaki A, et al. Expression of matrix metalloproteinases (MMP-2 and MMP-9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myel-ogenous leukemia blasts: comparison with normal bone marrow cells.Br J Haematol. 1999;105:402–411.PubMedGoogle Scholar
  91. 91.
    Lundberg LG, Lerner R, Sundelin P, Rogers R, Folman J, Palmblad J. Bone marrow in polycythemia vera, chronic myelocytic leukemia and myelofibrosis has an increased vascularity.Am J Pathol. 2000;157:15–19.PubMedGoogle Scholar
  92. 92.
    Mesa RA, Hanson CA, Rajkumar SV, Schroeder G, Tefferi A. Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia.Blood. 2000;96:3374–3380.PubMedGoogle Scholar
  93. 93.
    Yoon SY, Teffer A, Li CY. Bone marrow stromal cell distribution of basic fibroblast growth factor in chronic myeloid disorders.Haema-tologica. 2001;86:52–57.Google Scholar
  94. 94.
    Pruneri G, Bertolini F, Soligo D, et al. Angiogenesis in myelodys-plastic syndromes.Br J Cancer. 1999;81:1398–1401.PubMedGoogle Scholar
  95. 95.
    Bellamy WT, Richter L, Sirjani D, et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes.Blood. 2001;97:1427–1434.PubMedGoogle Scholar
  96. 96.
    Gunsilius E, Duba HC, Petzer AL, et al. Evidence from a leukemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells.Lancet. 2000;355:1688–1691.PubMedGoogle Scholar
  97. 97.
    Ribatti D, Vacca A, Nico B, et al. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma.Br J Cancer. 1999;79:451–455.PubMedGoogle Scholar
  98. 98.
    Vacca A, Ribatti D, Roncall L, et al. Bone marrow angiogenesis and progression in multiple myeloma.Br J Haematol. 1994;87:503–508.PubMedGoogle Scholar
  99. 99.
    Vacca A, Ribatti D, Roncall L, Dammacco F. Angiogenesis in B cell lymphoproliferative diseases. Biological and clinical studies.Leuk Lymphoma. 1995;20:27–38.PubMedGoogle Scholar
  100. 100.
    Rajkumar SV, Fonseca R, Witzig TE, Gertz MA, Greipp PR. Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma.Leukemia. 1999;13:469–472.PubMedGoogle Scholar
  101. 101.
    Laroche M, Brousset P, Ludot I, et al. Increased vascularization in myeloma.Eur J Haematol. 2001;66:89–93.PubMedGoogle Scholar
  102. 102.
    Rajkumar SV, Leong T, Roche PC, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma.Clin Cancer Res. 2000;6:3111–3116.PubMedGoogle Scholar
  103. 103.
    Sezer O, Niemoller K, Eucker J, et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma.Ann Hematol. 2000;79:574–577.PubMedGoogle Scholar
  104. 104.
    Ahn MJ, Park CK, Choi JH, et al. Clinical significance of microves-sel density in multiple myeloma patients.J Korean Med Sci. 2001;16:45–50.PubMedGoogle Scholar
  105. 105.
    Schreiber S, Ackermann J, Obermair A, et al. Multiple myeloma with deletion of chromosome 13q is characterized by increased bone marrow neovascularization.Br J Haematol. 2000;110:605–609.PubMedGoogle Scholar
  106. 106.
    Vacca A, Di Loreto M, Ribatti D, et al. Bone marrow of patients with active multiple myeloma: angiogenesis and plasma cell adhesion molecules LFA-1, VLA-4, LAM-1, and CD44.Am J Hematol. 1995;50:9–14.PubMedGoogle Scholar
  107. 107.
    Sezer O, Jakob C, Eucker J, et al. Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothe-lial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma.Eur J Haematol. 2001;66:83–88.PubMedGoogle Scholar
  108. 108.
    Di Raimondo F, Azzaro MP, Palumbo GA, et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood.Haematologica. 2000;85:800–805.PubMedGoogle Scholar
  109. 109.
    Seidel C, Borset M, Hjertner O, et al. High level of soluble synde-can-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity.Blood. 2000;96:3139–3146.PubMedGoogle Scholar
  110. 110.
    Dankbar B, Padro T, Leo R, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma.Blood. 2000;95:2630–2636.PubMedGoogle Scholar
  111. 111.
    Seidel C, Borset M, Turesson I, Abildgaard N, Sundan A, Waage A for the Nordic Myeloma Study Group. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma.Blood. 1998;91:806–812.PubMedGoogle Scholar
  112. 112.
    Borset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A. Hepa-tocyte growth factor and its receptor c-Met in multiple myeloma.Blood. 1996;88:3998–4004.PubMedGoogle Scholar
  113. 113.
    Borset M, Seidel C, Hjorth-Hansen H, Waage A, Sundan A. The role of hepatocyte growth factor and its receptor c-met in multiple myeloma and other blood malignancies.Leuk Lymphoma. 1999;32:249–256.PubMedGoogle Scholar
  114. 114.
    Vacca A, Ribatti D, Presta M, et al. Bone marrow neovasculariza-tion, plasma cell angiogenic potential, and matrix metallopro-teinase-2 secretion parallel progression of human multiple myeloma.Blood. 1999;93:3064–3073.PubMedGoogle Scholar
  115. 115.
    Yaccoby S, Barlogie B, Epstein J. Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations.Blood. 1998;92:2908–2913.PubMedGoogle Scholar
  116. 116.
    Dominici M, Campioni D, Lanza F, et al. Angiogenesis in multiple myeloma: correlation between in vitro endothelial colonies growth (CFU-En) and clinical-biological features.Leukemia. 2001;15:171–176.PubMedGoogle Scholar
  117. 117.
    Foss HD, Araujo I, Demel G, Klotzbach H, Hummel M, Stein H. Expression of vascular endothelial growth factor in lymphomas and Castleman’s disease.J Pathol. 1997;183:44–50.PubMedGoogle Scholar
  118. 118.
    Salven P, Teerenhovi L, Joensuu H. A high pretreatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin’s lymphoma.Blood. 1997;90:3167–3172.PubMedGoogle Scholar
  119. 119.
    Salven P, Teerenhovi L, Joensuu H. A high pretreatment serum basic fibroblast growth factor concentration is an independent predictor of poor prognosis in non-Hodgkin’s lymphoma.Blood. 1999;94:3334–3339.PubMedGoogle Scholar
  120. 120.
    Salven P, Orpana A, Teerenhovi L, Joensuu H. Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients.Blood. 2000;96:3712–3718.PubMedGoogle Scholar
  121. 121.
    Bertolini F, Paolucci M, Peccatori F, et al. Angiogenic growth factors and endostatin in non-Hodgkin’s lymphoma.Br J Haematol. 1999;106:504–509.PubMedGoogle Scholar
  122. 122.
    Ribatti D, Vacca RD, Nico B, Fanelli M, Roncali L, Dammacco F. Angiogenesis spectrum in the stroma of B-cell non-Hodgkin’s lymphomas. An immunohistochemical and ultrastructural study.Eur J Haematol. 1996;56:45–53.PubMedCrossRefGoogle Scholar
  123. 123.
    Weimar IS, de Jong D, Muller EJ, et al. Hepatocyte growth factor/ scatter factor promotes adhesion of lymphoma cells to extracellular matrix molecules via α4β1 and α5β1 integrins.Blood. 1997;89:990–1000.PubMedGoogle Scholar
  124. 124.
    Teofili L, Di Febo AL, Pierconti F, et al. Expression of the c-met proto-oncogene and its ligand, hepatocyte growth factor, in Hodg-kin disease.Blood. 2001;97:1063–1069.PubMedGoogle Scholar
  125. 125.
    Schaerer L, Schmid MH, Mueller B, Dummer RG, Burg G, Kempf W. Angiogenesis in cutaneous lymphoproliferative disorders: microvessel density discriminates between cutaneous B-cell lymphomas and B-cell pseudolymphomas.Am J Dermatopathol. 2000;22:140–143.PubMedGoogle Scholar
  126. 126.
    Ribatti D, Vacca A, Marzullo A, et al. Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas.Int J Cancer. 2000;85:171–175.PubMedGoogle Scholar
  127. 127.
    Vacca A, Ribatti D, Ruco L, et al. Angiogenesis extent and macrophage density increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas.Br J Cancer. 1999;79:965–970.PubMedGoogle Scholar
  128. 128.
    Bairey O, Zimra Y, Kaganovsky E, Shaklai M, Okon E, Rabizadeh E. Microvessel density in chemosensitive and chemoresistant diffuse large B-cell lymphomas.Med Oncol. 2000;17:314–318.PubMedGoogle Scholar
  129. 129.
    Vacca A, Morretti S, Ribatti D, et al. Progression of mycosis fun-goides is associated with changes in angiogenesis and expression of matrix metalloproteinases 2 and 9.Eur J Cancer. 1997;33:1685–1692.PubMedGoogle Scholar
  130. 130.
    Croix BS, Rago C, Victor V, et al. Genes expressed in human tumor endothelium.Science. 2000;289:1197–1202.Google Scholar
  131. 131.
    Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma.N Engl J Med. 1999;341:1565–1571.PubMedGoogle Scholar
  132. 132.
    Neben K, Hawighorst H, Moehler TM, et al. Clinical response to thalidomide monotherapy correlates with improvement in dynamic magnetic resonance (d-MRI) angiogenesis parameters [abstract].Blood. 1999;94:124a.Google Scholar
  133. 133.
    Juliusson G, Celsing F, Turesson I, Adriansson M, Malm C. Thalidomide frequently induces good partial remission and best response ever in patients with advanced myeloma and prior high dose mel-phalan and autotransplant [abstract].Blood. 1999;94:124a.Google Scholar
  134. 134.
    Raza S, Veksler Y, Sabir T, Li Z, Anderson L, Jagannath S. Durable response to thalidomide in relapse/refractory multiple myeloma (MM)[abstract].Blood. 2000;96:168a.Google Scholar
  135. 135.
    Moehler TM, Neben K, Hawighorst H, et al. Thalidomide plus CED chemotherapy as salvage therapy in poor prognosis multiple myeloma [abstract].Blood. 2000;96:290b.Google Scholar
  136. 136.
    Durie BGM, Stepan DE. Efficacy of low dose thalidomide (T) in multiple myeloma [abstract].Blood. 1999;94:316a.Google Scholar
  137. 137.
    Rajkumar SV, Fonseca R, Dispenzieri A, et al. Thalidomide in the treatment of relapsed and refractory myeloma.Mayo Clin Proc. 2000;75:897–901.PubMedGoogle Scholar
  138. 138.
    Schiller G, Vescio R, Berenson J. Thalidomide for the treatment of multiple myeloma relapsing after autologous peripheral blood progenitor cell transplant [abstract].Blood. 1999;94:317a.Google Scholar
  139. 139.
    Desikan R, Munshi N, Zeldis J, et al. Activity of thalidomide (THAL) in multiple myeloma (MM) confirmed in 180 patients with advanced disease [abstract].Blood. 1999;94:603a.Google Scholar
  140. 140.
    Weber DM, Gavino M, Delasalle K, Rankin K, Giralt S, Alexanian R. Thalidomide alone or with dexamethasone for multiple myeloma [abstract].Blood. 1999;94:604a.Google Scholar
  141. 141.
    Chen CI, Adesanya A, Sutton DM, Brandwein J, Stewart AK. Low-dose thalidomide in patients with advanced refractory multiple myeloma [abstract].Blood. 1999;94:308b.Google Scholar
  142. 142.
    Wu K, Schaafsma MR, Smit WM, Neef C, Richel DJ. Thalidomide as anti-angiogenesis treatment in patients with chemotherapy resistant multiple myeloma (MM) [abstract].Blood. 1999;94:316b.Google Scholar
  143. 143.
    Kneller A, Raanani P, Hardan I, et al. Therapy with thalidomide in refractory multiple myeloma patients-the revival of an old drug.Br J Haematol. 2000;108:391–393.PubMedGoogle Scholar
  144. 144.
    Coleman M, Gelfand RM, Leonard JP. Combination non-myelo-suppressive therapy (thalidomide, clarithromycin, dexamethasone) for plasma cell myeloma: a preliminary report [abstract].Blood. 1999;94:308b.Google Scholar
  145. 145.
    Srkalovic G, Karam MA, Mclain DA, Hussein MA. Melphalan, thalidomide and decadron (MTD) for refractory/relapsed multiple myeloma (MM) [abstract].Blood. 1999;94:314b.Google Scholar
  146. 146.
    Zomas A, Anagnostopoulos N, Dimopoulos MA. Successful treatment of multiple myeloma relapsing after high-dose therapy and autologous transplantation with thalidomide as a single agent.Bone Marrow Transplant. 2000;25:1319–1320.PubMedGoogle Scholar
  147. 147.
    Weber DM, Rankin K, Gavino M, Delasalle K, Alexanian R. Thal-idomide with dexamethasone for resistant multiple myeloma.Blood. 2000;96:167a.Google Scholar
  148. 148.
    Palumbo A, Giaccone L, Bertola A, et al. Low-dose thalidomide plus dexamethasone is an effective salvage therapy for advanced myeloma.Haematologica. 2001;86:399–403.PubMedGoogle Scholar
  149. 149.
    Yakoub-Agha I, Attal M, Dumontet C, et al. Thalidomide in patients with advanced myeloma: survival prognostic factors.Blood. 2000;96:167a.Google Scholar
  150. 150.
    Rajkumar SV, Hayman S, Fonseca R, et al. Thalidomide plus dex-amethasone (Thal/Dex) and thalidomide alone (Thal) as first line therapy for newly diagnosed myeloma [abstract].Blood. 2000;96:168a.Google Scholar
  151. 151.
    Barlogie B, Spencer T, Tricot G, et al. Long term follow up of 169 patients receiving a phase II trial of single agent thalidomide for advanced and refractory multiple myeloma (MM).Blood. 2000;96:514a.Google Scholar
  152. 152.
    D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis.Proc Natl Acad Sci U S A. 1994;91:4082–4085.PubMedGoogle Scholar
  153. 153.
    Shima Y, Treon SP, Yoshizaki K, et al. Clinical and biological activity of thalidomide (THAL) in multiple myeloma (MM) [abstract].Blood. 1999;94:125a.Google Scholar
  154. 154.
    Cheng D, Kini AR, Rodriguez J, Burt RK, Peterson LC, Traynor AE. Microvascular density and cytotoxic T cell activation correlate with response to thalidomide therapy in myeloma patients [abstract].Blood. 1999;94:315a.Google Scholar
  155. 155.
    Haslett PAJ, Corral LG, Albert M, Kaplan G. Thalidomide costim-ulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset.J Exp Med. 1998;187:1885–1892.PubMedGoogle Scholar
  156. 156.
    Geitz H, Handt S, Zwingenberger K. Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade.Immunopharmacol. 1996;31:213–221.Google Scholar
  157. 157.
    Or R, Feferman R, Shoshan S. Thalidomide reduces vascular density in granulation tissue of subcutaneously implanted polyvinyl alcohol sponges in guinea pigs.Exp Hematol. 1998;26:217–221.PubMedGoogle Scholar
  158. 158.
    Sauer H, Gunther J, Hescheler J, Wartenberg M. Thalidomide inhibits angiogenesis in embryoid bodies by the generation of hydroxyl radicals.Am J Pathol. 2000;156:151–158.PubMedGoogle Scholar
  159. 159.
    Bauer KS, Dixon SC, Figg WD. Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species-dependent.Biochem Pharmacol. 1998;55:1827–1834.PubMedGoogle Scholar
  160. 160.
    Petrucci MT, Ricciardi MR, Gregorj C, et al. Thalidomide effects on apoptosis in multiple myeloma: ex-vivo and in vitro study.Blood. 2000;96:366a.Google Scholar
  161. 161.
    Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy.Blood. 2000;2943–2950.Google Scholar
  162. 162.
    Rajkumar SV, Timm M, Mesa RA, et al. Effect of thalidomide on myeloma cell apoptosis and VEGF secretion.Blood. 2000;96:364a.Google Scholar
  163. 163.
    Thomas DA, Aguayo A, Estey E, et al. Thalidomide as anti-angio-genesis therapy (RX) in refractory or relapsed leukemias [abstract].Blood. 1999;94:507a.Google Scholar
  164. 164.
    Raza A, Lisak L, Andrews C, et al. Thalidomide produces transfusion independence in patients with long-standing refractory anemias and myelodysplastic syndromes (MDS) [abstract].Blood. 1999;94:661a.Google Scholar
  165. 165.
    Thoma DA, Aguayo A, Giles FJ, et al. Thalidomide anti-angiogen-esis therapy (RX) in Philadelphia (Ph)-negative myeloproliferative disorders (MPD) and myelofibrosis (MF) [abstract].Blood. 1999;94:702a.Google Scholar
  166. 166.
    Estey E, Albitar M, Cortes J, et al. Addition of thalidomide(T) to chemotherapy did not increase remission rate in poor prognosis AML/MDS.Blood. 2000;96:323a.Google Scholar
  167. 167.
    Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance.Nature. 1997;390:404–407.PubMedGoogle Scholar
  168. 168.
    Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE. 1 α,25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo.Circ Res. 2000;87:214–220.PubMedGoogle Scholar
  169. 169.
    Roboz GJ, Dias S, Lam G, et al. Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis.Blood. 2000;96:1525–1530.PubMedGoogle Scholar
  170. 170.
    Vacca A, Iurlaro M, Ribatti D, et al. Antiangiogenesis is produced by nontoxic doses of vinblastine.Blood. 1999;94:4143–4155.PubMedGoogle Scholar
  171. 171.
    Yao L, Pike SE, Setsuda J, et al. Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12.Blood. 2000;96:1900–1905.PubMedGoogle Scholar
  172. 172.
    Cervenak L, Morbidell L, Donati D, et al. Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10.Blood. 2000;96:2568–2573.PubMedGoogle Scholar
  173. 173.
    Bertolini F, Fusetti L, Rabascio C, Cinieri S, Martinelli G, Pruneri G. Inhibition of angiogenesis and induction of endothelial and tumor cell apoptosis by green tea in animal models of human high-grade non-Hodgkin’s lymphoma.Leukemia. 2000;14:1477–1482.PubMedGoogle Scholar
  174. 174.
    Bertolini F, Fusetti L, Mancuso P, et al. Endostatin, an antiangiogenic drug, induces tumor stabilization after chemotherapy or anti-CD20 therapy in a NOD/SCID mouse model of human high-grade non-Hodgkin lymphoma.Blood. 2000;96:282–287.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  1. 1.State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinPeople’s Republic of China
  2. 2.Institute of Hematology, CAMS and PUMCTianjinPR China

Personalised recommendations