International Journal of Hematology

, Volume 73, Issue 3, pp 278–291 | Cite as

Mechanisms of Transformation by the BCR/ABL Oncogene

  • Martin Sattler
  • James D. Griffin
Progress in hematology


The Philadelphia chromosome generates a chimeric oncogene in which the BCR and c-ABL genes are fused. The product of this oncogene, BCR/ABL, has elevated ABL tyrosine kinase activity, relocates to the cytoskeleton, and phosphorylates mul-tiple cellular substrates. BCR/ABL transforms hematopoietic cells and exerts a wide variety of biological effects, including reduction in growth factor dependence, enhanced viability, and altered adhesion of chronic myelocytic leukemia (CML) cells. Elevated tyrosine kinase activity of BCR/ABL is critical for activating downstream signal transduction and for all aspects of transformation.This review will describe mechanisms of transformation by the BCR/ABL oncogene and opportunities for clin-ical intervention with specific signal transduction inhibitors such as STI-571 in CML.

Key words

BCR/ABL Signal transduction Chronic myelogenous leukemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes.J Natl Cancer Inst. 1960;25:85–109.PubMedGoogle Scholar
  2. 2.
    Kurzrock R, Shtalrid M, Romero P, et al. A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukaemia.Nature. 1987;325:631–635.CrossRefPubMedGoogle Scholar
  3. 3.
    Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction).Blood. 1996;88:2410–2414.PubMedGoogle Scholar
  4. 4.
    Heisterkamp N, Stephenson JR, Groffen J, et al. Localization of the c-Abl oncogene adjacent to a translocation breakpoint in chronic myelocytic leukaemia.Nature. 1983;306:239–242.CrossRefPubMedGoogle Scholar
  5. 5.
    Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the Bcr gene and its role in the Ph translocation.Nature. 1985;315:758–760.CrossRefPubMedGoogle Scholar
  6. 6.
    Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific p210 protein is the product of the Bcr/Abl hybrid gene.Science. 1986;233:212–214.CrossRefPubMedGoogle Scholar
  7. 7.
    Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia.Nature. 1985;315:550–554.CrossRefPubMedGoogle Scholar
  8. 8.
    Fainstein E, Marcelle C, Rosner A, et al. A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia.Nature. 1987;330:386–388.CrossRefPubMedGoogle Scholar
  9. 9.
    Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON. Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL.Science. 1987;235:85–88.CrossRefPubMedGoogle Scholar
  10. 10.
    Walker LC, Ganesan TS, Dhut S, et al. Novel chimaeric protein expressed in Philadelphia positive acute lymphoblastic leukaemia.Nature. 1987;329:851–853.CrossRefPubMedGoogle Scholar
  11. 11.
    Chan LC, Karhi KK, Rayter SI, et al. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia.Nature. 1987;325:635–637.CrossRefPubMedGoogle Scholar
  12. 12.
    Sattler M, Salgia R. Activation of hematopoietic growth factor signal transduction pathways by the human oncogene BCR/ABL.Cytokine Growth Factor Rev. 1997;8:63–79.CrossRefPubMedGoogle Scholar
  13. 13.
    Daley G, Baltimore D. Transformation of an interleukin- 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific p210 BCR/ABL protein.Proc Natl Acad Sci U S A. 1988;85:9312–9316.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Matulonis U, Salgia R, Okuda K, Druker B, Griffin J. Interleukin-3 and p210 BCR/ABL activate both unique and overlapping pathways of signal transduction in a factor-dependent myeloid cell line.Exp Hematol. 1993;21:1460–1466.PubMedGoogle Scholar
  15. 15.
    LIFP. Epidemiology of chronic leukemia. In: Wiernik PH, Canellos GP, Kyle RA, et al, eds.Neoplastic Disease of the Blood. New York, NY: Churchill Livingstone; 1991:7–14.Google Scholar
  16. 16.
    Kantarjian H, Faderl S,Talpaz M. Chronic Myelogenous Leukemia. In: DeVita VT Jr, Hellman S, Rosenberg SA, eds.Cancer: Principles and Practice of Oncology. Philadelphia, Pa: Lippincott Williams and Williams; 2001:2433–2447.Google Scholar
  17. 17.
    Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells.Nat Med. 1996;2:561–566.PubMedCrossRefGoogle Scholar
  18. 18.
    Donato NJ, Talpaz M. Clinical use of tyrosine kinase inhibitors: therapy for chronic myelogenous leukemia and other cancers.Clin Cancer Res. 2000;6:2965–2966.PubMedGoogle Scholar
  19. 19.
    Goldman JM. Tyrosine-kinase inhibition in treatment of chronic myeloid leukaemia.Lancet. 2000;355:1031–1032.CrossRefPubMedGoogle Scholar
  20. 20.
    Deininger MW, Goldman JM, Lydon N, Melo JV. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells.Blood. 1997;90:3691–3698.PubMedGoogle Scholar
  21. 21.
    Carroll M, Ohno-Jones S, Tamura S, et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins.Blood. 1997;90:4947–4952.PubMedGoogle Scholar
  22. 22.
    Wang WL, Healy ME, Sattler M, et al. Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571.Oncogene. 2000;19:3521–3528.CrossRefPubMedGoogle Scholar
  23. 23.
    Buchdunger E, Cioffi CL, Law N, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits In vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors.J Pharmacol Exp Ther. 2000;295:139–145.PubMedGoogle Scholar
  24. 24.
    Krystal GW, Honsawek S, Litz J, Buchdunger E. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth.Clin Cancer Res. 2000;6:3319–3326.PubMedGoogle Scholar
  25. 25.
    Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor.Blood. 2000;96:925–932.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Baikie AG, Court-Brown WM, Buckton KE, Harnden DG, Jacobs PA, Tough IM. A possible specific chromosome abnormality in human chronic myeloid leukaemia.Nature. 1960;188:1165–1160.CrossRefPubMedGoogle Scholar
  27. 27.
    Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.Nature. 1973;243:290–293.CrossRefPubMedGoogle Scholar
  28. 28.
    Fialkow PJ, Jacobson RJ, Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage.Am J Med. 1977;63:125–130.CrossRefPubMedGoogle Scholar
  29. 29.
    Golub T, Baker G, Lovett M, Gilliland D. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation.Cell. 1994;77:307–316.CrossRefPubMedGoogle Scholar
  30. 30.
    Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG. The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinasedependent signaling pathways.Proc Natl Acad Sci U S A. 1996;93:14845–14850.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM. The novel activation of abl by fusion to an ets-related gene, tel.Cancer Research. 1995;55:34–38.PubMedGoogle Scholar
  32. 32.
    Janssen JW, Ridge SA, Papadopoulos P, et al. The fusion of TEL and ABL in human acute lymphoblastic leukaemia is a rare event.Br J Haematol. 1995;90:222–224.CrossRefPubMedGoogle Scholar
  33. 33.
    Golub TR, Goga, A, Barker GF, et al. Oligomerization of the Abl tyrosine kinase by the Ets protein Tel in human leukemia.Mol Cell Biol. 1996;16:4107–4116.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Andreasson P, Johansson B, Carlsson M, et al. BCR/ABL-negative chronic myeloid leukemia with ETV6/ABL fusion.Genes Chromosomes Cancer. 1997;20:299–304.CrossRefPubMedGoogle Scholar
  35. 35.
    Cazzaniga G, Tosi S, Aloisi A, et al. The tyrosine kinase abl-related gene ARG is fused to ETV6 in an AML- M4Eo patient with a t(1;12)(q25;p13): molecular cloning of both reciprocal transcripts.Blood. 1999;94:4370–4373.PubMedGoogle Scholar
  36. 36.
    Iijima Y, Ito T, Oikawa T, et al. A new ETV6/TEL partner gene, ARG (ABL-related gene or ABL2), identified in an AML-M3 cell line with a t(1;12)(q25;p13) translocation.Blood. 2000;95:2126–2131.PubMedGoogle Scholar
  37. 37.
    Peeters P, Raynaud SD, Cools J, et al. Fusion of TEL, the ETS- variant gene 6 (ETV6), to the receptorassociated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia.Blood. 1997;90:2535–2540.PubMedGoogle Scholar
  38. 38.
    Lacronique V, Boureux A, Valle VD, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia.Science. 1997;278:1309–1312.CrossRefPubMedGoogle Scholar
  39. 39.
    Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma.Nat Genet. 1998;18:184–187.CrossRefPubMedGoogle Scholar
  40. 40.
    Eguchi M, Eguchi-Ishimae M,Tojo A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12; 15)(p13;q25).Blood. 1999;93:1355–1363.PubMedGoogle Scholar
  41. 41.
    Wong PM, Chung SW, Dunbar CE, Bodine DM, Ruscetti S, Nienhuis AW. Retrovirus-mediated transfer and expression of the interleukin-3 gene in mouse hematopoietic cells result in a myeloproliferative disorder.Mol Cell Biol. 1989;9:798–808.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lang RA, Metcalf D, Cuthbertson RA, et al. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage.Cell. 1987;51:675–686.CrossRefPubMedGoogle Scholar
  43. 43.
    Liu Q, Schwaller J, Kutok J, et al. Signal transduction and transforming properties of the TEL-TRKC fusions associated with t(12;15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia.EMBO J. 2000;19:1827–1838.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Tomasson MH, Sternberg DW, Williams IR, et al. Fatal myeloproliferation, induced in mice by TEL/PDGFbetaR expression, depends on PDGFbetaR tyrosines 579/581.J Clin Invest. 2000;105:423–432.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ritchie KA, Aprikyan AA, Bowen-Pope DF, et al. The Tel- PDGFRbeta fusion gene produces a chronic myeloproliferative syndrome in transgenic mice.Leukemia. 1999;13:1790–1803.CrossRefPubMedGoogle Scholar
  46. 46.
    Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity.J Exp Med. 1999;189:1399–1412.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Quackenbush RC, Reuther GW, Miller JP, Courtney KD, Pear WS, Pendergast AM. Analysis of the biologic properties of p230 Bcr- Abl reveals unique and overlapping properties with the oncogenic p185 and p210 Bcr-Abl tyrosine kinases.Blood. 2000;95:2913–2921.PubMedGoogle Scholar
  48. 48.
    Klucher KM, Lopez DV, Daley GQ. Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression.Blood. 1998;91:3927–3934.PubMedGoogle Scholar
  49. 49.
    Salloukh HF, Laneuville P. Increase in mutant frequencies in mice expressing the BCR-ABL activated tyrosine kinase.Leukemia. 2000;14:1401–1404.CrossRefPubMedGoogle Scholar
  50. 50.
    Verfaillie CM, McCarthy JB, McGlave PB. Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia.J Clin Invest. 1992;90:1232–1241.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kawaishi K, Kimura A, Katoh O, et al. Decreased l-selectin expression in CD34-positive cells from patients with chronic myelocytic leukaemia.Br J Haematol. 1996;93:367–374.CrossRefPubMedGoogle Scholar
  52. 52.
    Ghaffari S, Dougherty GJ, Lansdorp PM, Eaves AC, Eaves CJ. Differentiation-associated changes in CD44 isoform expression during normal hematopoiesis and their alteration in chronic myeloid leukemia.Blood. 1995;86:2976–2985.PubMedGoogle Scholar
  53. 53.
    Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia.Nature. 1987;328:342–344.CrossRefPubMedGoogle Scholar
  54. 54.
    Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken.Science. 1995;268:233–239.CrossRefPubMedGoogle Scholar
  55. 55.
    Rosales C, Juliano RL. Signal transduction by cell adhesion receptors in leukocytes.J Leukoc Biol. 1995;57:189–198.CrossRefPubMedGoogle Scholar
  56. 56.
    Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction.Ann Rev Cell Develop Biol. 1995;11:549–599.CrossRefGoogle Scholar
  57. 57.
    Chuang TH, Xu X, Kaartinen V, Heisterkamp N, Groffen J, Bokoch GM. Abr and Bcr are multifunctional regulators of the Rho GTP- binding protein family.Proc Natl Acad Sci U S A. 1995;92:10282–10286.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wen ST, Jackson PK, Van Etten RA. The cytostatic function of c- Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products.EMBO J. 1996;15:1583–1595.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias.EMBO J. 1993;12:1533–1546.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Van Etten R, Jackson P, Baltimore D, Sanders M, Matsudaira P, Janmey P. The COOH terminus of the c-Abl tyrosine kinase contains distinct F-and G-actin binding domains with bundling activity.J Cell Biol. 1994;124:325–340.CrossRefPubMedGoogle Scholar
  61. 61.
    McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins.Mol Cell Biol. 1993;13:7587–7595.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein.Cell. 1993;75:175–185.CrossRefPubMedGoogle Scholar
  63. 63.
    Puil L, Liu J, Gish G, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway.EMBO J. 1994;13:764–773.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Afar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL. Differential complementation of Bcr-Abl point mutants with c-Myc.Science. 1994;264:424–426.CrossRefPubMedGoogle Scholar
  65. 65.
    Voncken JW, van Schaick H, Kaartinen V, et al. Increased neutrophil respiratory burst in bcr-null mutants.Cell. 1995;80:719–728.CrossRefPubMedGoogle Scholar
  66. 66.
    Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci P. Not all SHC roads lead to Ras.Trends Biochem Sci. 1996;21:257–261.CrossRefPubMedGoogle Scholar
  67. 67.
    Macara IG, Lounsbury KM, Richards SA, Mckiernan C, Barsagi D. The Ras superfamily of GTPases.FASEB J. 1996;10:625–630.CrossRefPubMedGoogle Scholar
  68. 68.
    Denhardt DT. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell—the potential for multiplex signalling.Biochem J. 1996;318:729–747.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gishizky ML, Cortez D, Pendergast AM. Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation.Proc Natl Acad Sci U S A. 1995;92:10889–10893.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Skorski T, Kanakaraj P, Ku DH, et al. Negative regulation of p120GAP GTPase promoting activity by p210Bcr/Abl: implication for ras-dependent Philadelphia chromosome positive cell growth.J Exp Med. 1994;179:1855–1865.CrossRefPubMedGoogle Scholar
  71. 71.
    Goga A, McLaughlin J, Afar DE, Saffran DC, Witte ON. Alternative signals to RAS for hematopoietic transformation by the BCR- ABL oncogene.Cell. 1995;82:981–988.CrossRefPubMedGoogle Scholar
  72. 72.
    Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis.Mol Cell Biol. 1995;15:5531–5541.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Scita G, Tenca P, Frittoli E, et al. Signaling from Ras to Rac and beyond: not just a matter of GEFs.EMBO J. 2000;19:2393–2398.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Million RP, Van Etten RA. The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase.Blood. 2000;96:664–670.PubMedGoogle Scholar
  75. 75.
    Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R. The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl.Mol Cell Biol. 2001;21:840–853.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wang JY, Ledley F, Goff S, Lee R, Groner Y, Baltimore D. The mouse c-abl locus: molecular cloning and characterization.Cell. 1984;36:349–356.CrossRefPubMedGoogle Scholar
  77. 77.
    Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene.Cell. 1991;65:1153–1163.CrossRefPubMedGoogle Scholar
  78. 78.
    Schwartzberg PL, Stall AM, Hardin JD, et al. Mice homozygous for the ABLm1 mutation show poor viability and depletion of selected B and T cell populations.Cell. 1991;65:1165–1175.CrossRefPubMedGoogle Scholar
  79. 79.
    Li B, Boast S, de los Santos K, et al. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation.Nat Genet. 2000;24:304–308.CrossRefPubMedGoogle Scholar
  80. 80.
    Kharbanda S, Ren R, Pandey P, et al. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents.Nature. 1995;376:785–788.CrossRefPubMedGoogle Scholar
  81. 81.
    Welch PJ, Wang JY. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle.Cell. 1993;75:779–790.CrossRefPubMedGoogle Scholar
  82. 82.
    Yuan ZM, Huang YY, Whang Y, et al. Role for c-Abl tyrosine kinase in growth arrest response to dna damage.Nature. 1996;382:272–274.CrossRefPubMedGoogle Scholar
  83. 83.
    Wetzler M, Talpaz M, Van Etten R, Hirsh-Ginsberg C, Beran M, Kurzrock R. Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation.J Clin Invest. 1993;92:1925–1939.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    McWhirter J, Wang J. Activation of tyrosine kinase and microfilament-binding functions of c-Abl byBcr sequences inBcr/Abl fusion proteins.Mol Cell Biol. 1991;11:1553–1565.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Pendergast AM, Gishizky ML, Havlik MH,Witte ON. SH1 domain autophosphorylation of p210 BCR/ABL is required for transformation but not growth factor independence.Mol Cell Biol. 1993;13:1728–1736.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Barila D, Superti-Furga G. An intramolecular SH3-domain interaction regulates c-Abl activity.Nat Genet. 1998;18:280–282.CrossRefPubMedGoogle Scholar
  87. 87.
    Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase.Science. 2000;289:1938–1942.CrossRefPubMedGoogle Scholar
  88. 88.
    Druker B, Okuda K, Matulonis U, Salgia R, Roberts T, Griffin J. Tyrosine phosphorylation of rasGAP and associated proteins in chronic myelogenous leukemia cell lines.Blood. 1992;79:2215–2220.PubMedGoogle Scholar
  89. 89.
    Jackson PK, Paskind M, Baltimore D. Mutation of a phenylalanine conserved in SH3-containing tyrosine kinases activates the transforming ability of c-Abl.Oncogene. 1993;8:1943–1956.PubMedGoogle Scholar
  90. 90.
    Pendergast AM, Muller AJ, Havlik MH, Clark R, McCormick F, Witte ON. Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor.Proc Natl Acad Sci U S A. 1991;88:5927–5931.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wen ST, Van Etten RA. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity.Genes Dev. 1997;11:2456–2467.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Maru Y, Witte ON, Shibuya M. Deletion of the ABL SH3 domain reactivates de-oligomerized BCR-ABL for growth factor independence.FEBS Lett. 1996;379:244–246.CrossRefPubMedGoogle Scholar
  93. 93.
    Oda T, Tamura S, Matsuguchi T, Griffin JD, Druker BJ. The SH2 domain of abl is not required for factor-independent growth induced by bcr-abl in a murine myeloid cell line.Leukemia. 1995;9:295–301.PubMedGoogle Scholar
  94. 94.
    Ilaria RL,Vanetten RA. The SH2 domain of p210BCR/ABL is not required for the transformation of hematopoietic factor-dependent cells.Blood. 1995;86:3897–3904.PubMedGoogle Scholar
  95. 95.
    Anderson SM, Mladenovic J. The BCR-ABL oncogene requires both kinase activity and Src-homology 2 domain to induce cytokine secretion.Blood. 1996;87:238–244.PubMedGoogle Scholar
  96. 96.
    Roumiantsev S, de Aos IE,Varticovski L, Ilaria RL, Van Etten RA. The src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase.Blood. 2001;97:4–13.CrossRefPubMedGoogle Scholar
  97. 97.
    ten Hoeve J, Arlinghaus RB, Guo JQ, Heisterkamp N, Groffen J. Tyrosine phosphorylation of Crkl in Philadelphia(+) leukemia.Blood. 1994;84:1731–1736.PubMedGoogle Scholar
  98. 98.
    Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia.J Biol Chem. 1994;269:22925–22928.PubMedGoogle Scholar
  99. 99.
    Nichols GL, Raines MA,Vera JC, Lacomis L,Tempst P, Golde DW. Identification of CRKL as the constitutively phosphorylated 39- kD tyrosine phosphoprotein in chronic myelogenous leukemia cells.Blood. 1994;84:2912–2918.PubMedGoogle Scholar
  100. 100.
    Mayer BJ, Hanafusa H. Mutagenic analysis of the v-crk oncogene: requirement for SH2 and SH3 domains and correlation between increased cellular phosphotyrosine and transformation.J Virol. 1990;64:3581–3589.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Feller SM, Knudsen B, Hanafusa H. c-Abl kinase regulates the protein binding activity of c-Crk.EMBO J. 1994;13:2341–2351.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ren R, Ye ZS, Baltimore D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites.Genes Develop. 1994;8:783–795.CrossRefPubMedGoogle Scholar
  103. 103.
    Senechal K, Halpern J, Sawyers CL. The Crkl adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene.J Biol Chem. 1996;271:23255–23261.CrossRefPubMedGoogle Scholar
  104. 104.
    Heaney C, Kolibaba K, Bhat A, et al. Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation.Blood. 1997;89:297–306.PubMedGoogle Scholar
  105. 105.
    Sattler M, Salgia R, Okuda K, et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3 kinase pathway.Oncogene. 1996;12:839–846.PubMedGoogle Scholar
  106. 106.
    Salgia R, Uemura N, Okuda K, et al. Crkl links p210BCR/ABL with paxillin in chronic myelogenous leukemia cells.J Biol Chem. 1995;270:29145–29150.CrossRefPubMedGoogle Scholar
  107. 107.
    Salgia R, Pisick E, Sattler M, et al. p130pCAS forms a signaling complex with the adapter protein Crkl in hematopoietic cells transformed by the Bcr/Abl oncogene.J Biol Chem. 1996;271:25198–25203.CrossRefPubMedGoogle Scholar
  108. 108.
    Sattler M, Salgia R, Shrikhande G, et al. Differential signaling after beta1 integrin ligation is mediated through binding of CRKL to p120(CBL) and p110(HEF1).J Biol Chem. 1997;272:14320–14326.CrossRefPubMedGoogle Scholar
  109. 109.
    deJong R, Hoeve J, Heisterkamp N, Groffen J. CRKL is complexed with tyrosine-phosphorylated cbl in Ph-positive leukemia.J Biol Chem. 1995;270:21468–21471.CrossRefGoogle Scholar
  110. 110.
    Andoniou CE, Thien C, Langdon WY. The two major sites of Cbl tyrosine phosphorylation in Abl-transformed cells select the Crkl SH2 domain.Oncogene. 1996;12:1981–1989.PubMedGoogle Scholar
  111. 111.
    Feller SM, Knudsen B, Hanafusa H. Cellular proteins binding to the first src homology 3 (SH3) domain of the proto-oncogene product c-crk indicate crk-specific signaling pathways.Oncogene. 1995;10:1465–1473.PubMedGoogle Scholar
  112. 112.
    Sattler M, Salgia R, Shrikhande G, et al. Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-kit, phosphatidylinositol 3-kinase, and p120(CBL).J Biol Chem. 1997;272:10248–10253.CrossRefPubMedGoogle Scholar
  113. 113.
    Salgia R, Brunkhorst B, Pisick E, et al. Increased tyrosine phosphorylation of focal adhesion proteins in myeloid cell lines expressing p210BCR/ABL.Oncogene. 1995;11:1149–1155.PubMedGoogle Scholar
  114. 114.
    Heisterkamp N, Voncken JW, Senadheera D, et al. Reduced oncogenicity of p190 Bcr/Abl F-actin-binding domain mutants.Blood. 2000;96:2226–2232.PubMedGoogle Scholar
  115. 115.
    Ihle JN, Thierfelder W, Teglund S, et al. Signaling by the cytokine receptor superfamily.Ann N Y Acad Sci. 1998;865:1–9.CrossRefPubMedGoogle Scholar
  116. 116.
    Luo H, Hanratty WP, Dearolf CR. An amino acid substitution in the drosophila hop(Tum-l) JAK kinase causes leukemia-like hematopoietic defects.EMBO J. 1995;14:1412–1420.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Bromberg J, Darnell JE. The role of STATs in transcriptional control and their impact on cellular function.Oncogene. 2000;19:2468–2473.CrossRefPubMedGoogle Scholar
  118. 118.
    Zhang X, Blenis J, Li HC, Schindler C, Chen-Kiang S. Requirement of serine phosphorylation for formation of STAT-promoter complexes.Science. 1995;267:1990–1994.CrossRefPubMedGoogle Scholar
  119. 119.
    Beuvink I, Hess D, Flotow H, Hofsteenge J, Groner B, Hynes, NE. Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity.J Biol Chem. 2000;275:10247–10255.CrossRefPubMedGoogle Scholar
  120. 120.
    Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by BCR/ABL.J Exp Med. 1996;183:811–820.CrossRefPubMedGoogle Scholar
  121. 121.
    Shuai, K, Halpern J, Tenhoeve J, Rao XP, Sawyers CL. Constitutive activation of Stat5 by the Bcr-Abl oncogene in chronic myelogenous leukemia.Oncogene. 1996;13:247–254.PubMedGoogle Scholar
  122. 122.
    Ilaria RL, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members.J Biol Chem. 1996;271:31704–31710.CrossRefPubMedGoogle Scholar
  123. 123.
    Okuda K, Golub TR, Gilliland DG, Griffin JD. p210BCR/ABL, p190BCR/ABL, and TEL/ABL activate similar signal transduction pathways in hematopoietic cell lines.Oncogene. 1996;13:1147–1152.PubMedGoogle Scholar
  124. 124.
    Schwaller J, Frantsve J, Aster J, et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes.EMBO J. 1998;17:5321–5333.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Mui A, Wakao H, Kinoshita T, Kitamura T, Miyajima A. Suppression of interleukin-3-induced gene expression by a C-terminal truncated STAT5: role of STAT5 in proliferation.EMBO J. 1996;15:2425–2433.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Shuai K, Horvath M, Huang LH, Qureshi SA, Cowburn D, Darnell JE. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions.Cell. 1994;76:821–828.CrossRefPubMedGoogle Scholar
  127. 127.
    Lin JX, Mietz J, Modi WS, John S, Leonard WJ. Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells.J Biol Chem. 1996;271:10738–10744.CrossRefPubMedGoogle Scholar
  128. 128.
    Gouilleux F, Pallard C, Dusanter-Fourt I, et al. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity.EMBO J. 1995;14:2005–2013.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Azam M, Erdjument-Bromage H, Kreider BL, et al. Interleukin-3 signals through multiple isoforms of Stat5.EMBO J. 1995;14:1402–1411.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Teglund S, McKay C, Schuetz E, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses.Cell. 1998;93:841–850.CrossRefPubMedGoogle Scholar
  131. 131.
    Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF. Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction.Cell. 1999;98:181–191.CrossRefPubMedGoogle Scholar
  132. 132.
    Sexl V, Piekorz R, Moriggl R, et al. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/ablinduced transformation are independent of stat5.Blood. 2000;96:2277–2283.PubMedGoogle Scholar
  133. 133.
    Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abltransformed cells.Blood. 2000;95:2118–2125.PubMedGoogle Scholar
  134. 134.
    Onishi M, Nosaka T, Misawa K, et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation.Mol Cell Biol. 1998;18:3871–3879.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Rhodes J, York RD, Tara D, Tajinda K, Druker BJ. CrkL functions as a nuclear adaptor and transcriptional activator in Bcr-Ablexpressing cells.Exp Hematol. 2000;28:305–310.CrossRefPubMedGoogle Scholar
  136. 136.
    Durbin JE, Hackenmiller, R, Simon MC, Levy DE. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease.Cell. 1996;84:443–450.CrossRefPubMedGoogle Scholar
  137. 137.
    Shimoda K, van Deursen J, Sangster MY, et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene.Nature. 1996;380:630–633.CrossRefPubMedGoogle Scholar
  138. 138.
    Holtschke T, Löhler J, Kanno Y, et al. Immunodefiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene.Cell. 1996;87:307–317.CrossRefPubMedGoogle Scholar
  139. 139.
    Schmidt M, Nagel S, Proba J, et al. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias.Blood. 1998;91:22–29.PubMedGoogle Scholar
  140. 140.
    Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemialike disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder.Mol Cell Biol. 2000;20:1149–1161.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Toker A. Protein kinases as mediators of phosphoinositide 3-kinase signaling.Mol Pharmacol. 2000;57:652–658.CrossRefPubMedGoogle Scholar
  142. 142.
    Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function.J Biol Chem. 1999;274:8347–8350.CrossRefPubMedGoogle Scholar
  143. 143.
    Rebecchi MJ, Scarlata S. Pleckstrin homology domains: a common fold with diverse functions.Annu Rev Biophys Biomol Struct. 1998;27:503–528.CrossRefPubMedGoogle Scholar
  144. 144.
    Lemmon MA, Ferguson KM, Schlessinger J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface.Cell. 1996;85:621–624.CrossRefPubMedGoogle Scholar
  145. 145.
    Gaullier JM, Simonsen A, D’Arrigo A, Bremnes B, Stenmark H, Aasland R. FYVE fingers bind PtdIns(3)P.Nature. 1998;394:432–433.CrossRefPubMedGoogle Scholar
  146. 146.
    Patki V, Lawe DC, Corvera S, Virbasius JV, Chawla AA. functional PtdIns(3)P-binding motif.Nature. 1998;394:433–434.CrossRefPubMedGoogle Scholar
  147. 147.
    Rameh LE, Chen CS, Cantley LC. Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins.Cell. 1995;83:821–830.CrossRefPubMedGoogle Scholar
  148. 148.
    Gold MR, Duronio V, Saxena SP, Schrader JW, Aebersold R. Multiple cytokines activate phosphatidylinositol 3-kinase in hemopoietic cells. Association of the enzyme with various tyrosinephosphorylated proteins.J Biol Chem. 1994;269:5403–5412.PubMedGoogle Scholar
  149. 149.
    Varticovski L, Daley GQ, Jackson P, Baltimore D, Cantley LC. Activation of phosphatidylinositol 3-kinase in cells expressing Abl oncogene variants.Mol Cell Biol. 1991;11:1107–1113.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Serve H, Hsu YC, Besmer P. Tyrosine residue 719 of the c-kit receptor is essential for binding of the p85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in COS-1 cells.J Biol Chem. 1994;269:6026–6030.PubMedGoogle Scholar
  151. 151.
    Sun XJ, Rothenberg P, Kahn CR, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein.Nature 1991;352:73–77.CrossRefPubMedGoogle Scholar
  152. 152.
    Gadina M, Sudarshan C, Visconti R, et al. The docking molecule gab2 is induced by lymphocyte activation and is involved in signaling by interleukin-2 and interleukin-15 but not other common gamma chain-using cytokines.J Biol Chem. 2000;275:26959–26966.PubMedGoogle Scholar
  153. 153.
    Gu H, Maeda H, Moon JJ, et al. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway.Mol Cell Biol. 2000;20:7109–7120.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kapeller R, Cantley LC. Phosphatidylinositol 3-kinase.Bioessays. 1994;16:565–576.CrossRefPubMedGoogle Scholar
  155. 155.
    Carpenter CL, Cantley LC. Phosphoinositide 3-kinase and the regulation of growth.Biochim Biophys Acta. 1996;1288:11–16.Google Scholar
  156. 156.
    Herbst JJ, Andrews G, Contillo L, et al. Potent activation of phosphatidylinositol 3′-kinase by simple phosphotyrosine peptides derived from insulin receptor substrate 1 containing two YMXM motifs for binding SH2 domains.Biochemistry. 1994;33:9376–9381.CrossRefPubMedGoogle Scholar
  157. 157.
    Skorski T, Kanakaraj P, Nieborowskaskorska M, et al. Phosphatidylinositol-3 kinase activity is regulated by bcr/abl and is required for the growth of philadelphia chromosome-positive cells.Blood. 1995;86:726–736.PubMedGoogle Scholar
  158. 158.
    Bedi A, Griffin CA, Barber JP, et al. Growth factor-mediated terminal differentiation of chronic myeloid leukemia.Cancer Res. 1994;54:5535–5538.PubMedGoogle Scholar
  159. 159.
    Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ. Inhibition of apoptosis by Bcr-Abl in chronic myeloid leukemia.Blood. 1994;83:2038–2044.PubMedGoogle Scholar
  160. 160.
    Harrisonfindik D, Susa M, Varticovski L. Association of phosphatidylinositol 3-kinase with shc in chronic myelogeneous leukemia cells.Oncogene. 1995;10:1385–1391.Google Scholar
  161. 161.
    Jain SK, Susa M, Keeler ML, Carlesso N, Druker B, Varticovski L. PI 3-kinase activation in BCR/ABL-transformed hematopoietic cells does not require interaction of p85 SH2 domains with p210 BCR/ABL.Blood. 1996;88:1542–1550.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Skorski T, Bellacosa A, Nieborowska-Skorska M, et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway.EMBO J. 1997;16:6151–6161.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma.Proc Natl Acad Sci U S A. 1987;84:5034–5037.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Staal SP, Hartley JW. Thymic lymphoma induction by the AKT8 murine retrovirus.J Exp Med. 1988;167:1259–1264.CrossRefPubMedGoogle Scholar
  165. 165.
    Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha.Curr Biol. 1997;7:261–269.CrossRefPubMedGoogle Scholar
  166. 166.
    Stokoe D, Stephens LR, Copeland T, et al. Dual role of phos-phatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B.Science. 1997;277:567–570.CrossRefPubMedGoogle Scholar
  167. 167.
    Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cellintrinsic death machinery.Cell. 1997;91:231–241.CrossRefPubMedGoogle Scholar
  168. 168.
    Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation.Science. 1998;282:1318–1321.CrossRefPubMedGoogle Scholar
  169. 169.
    Salomoni P, Condorelli F, Sweeney SM, Calabretta B. Versatility of BCR/ABL-expressing leukemic cells in circumventing proapoptotic BAD effects.Blood. 2000;96:676–684.PubMedGoogle Scholar
  170. 170.
    Neshat MS, Raitano AB,Wang HG, Reed JC, Sawyers CL. The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3- kinase and Raf.Mol Cell Biol. 2000;20:1179–1186.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Svingen PA,Tefferi A, Kottke TJ, et al. Effects of the bcr/abl kinase inhibitors AG957 and NSC 680410 on chronic myelogenous leukemia cells in vitro.Clin Cancer Res. 2000;6:237–249.PubMedGoogle Scholar
  172. 172.
    Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor.Cell. 1999;96:857–868.CrossRefPubMedGoogle Scholar
  173. 173.
    Gesbert F, Sellers WR, Signoretti S, Loda M, Griffin JD. BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway.J Biol Chem. 2000;275:39223–39230.CrossRefPubMedGoogle Scholar
  174. 174.
    Jonuleit T, van der Kuip H, Miething C, et al. Bcr-Abl kinase downregulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines.Blood. 2000;96:1933–1939.PubMedGoogle Scholar
  175. 175.
    Evers EE, Zondag GC, Malliri A, et al. Rho family proteins in cell adhesion and cell migration.Eur J Cancer. 2000;36:1269–1274.CrossRefPubMedGoogle Scholar
  176. 176.
    Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion.Exp Cell Res. 2000;261:1–12.CrossRefPubMedGoogle Scholar
  177. 177.
    Skorski T, Wlodarski P, Daheron L, et al. BCR/ABL-mediated leukemogenesis requires the activity of the small GTP- binding protein Rac.Proc Natl Acad Sci U S A. 1998;95:11858–11862.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Krystal G. Lipid phosphatases in the immune system.Semin Immunol. 2000;12:397–403.CrossRefPubMedGoogle Scholar
  179. 179.
    Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM. Structure, function, and biology of SHIP proteins.Genes Dev. 2000;14:505–520.PubMedGoogle Scholar
  180. 180.
    Maehama T, Dixon JE. PTEN: a tumour suppressor that functions as a phospholipid phosphatase.Trends Cell Biol. 1999;9:125–128.CrossRefPubMedGoogle Scholar
  181. 181.
    Vazquez F, Sellers WR. The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3- kinase signaling.Biochim Biophys Acta. 2000;1470:M21-M35.PubMedGoogle Scholar
  182. 182.
    Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression.Cell. 2000;100:387–390.CrossRefPubMedGoogle Scholar
  183. 183.
    Aggerholm A, Gronbaek K, Guldberg P, Hokland P. Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders.Eur J Haematol. 2000;65:109–113.CrossRefPubMedGoogle Scholar
  184. 184.
    Sattler M, Verma S, Byrne CH, et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis.Mol Cell Biol. 1999;19:7473–7480.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Helgason CD, Damen JE, Rosten P, et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span.Genes Dev. 1998;12:1610–1620.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Sattler M, Verma S, Shrikhande G, et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells.J Biol Chem. 2000;275:24273–24278.CrossRefPubMedGoogle Scholar
  187. 187.
    Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation.Free Radic Biol Med. 1995;18:775–794.CrossRefPubMedGoogle Scholar
  188. 188.
    Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.Biochemistry. 1998;37:5633–5642.CrossRefPubMedGoogle Scholar
  189. 189.
    Monteiro HP, Stern A. Redox modulation of tyrosine phosphorylation-dependent signal transduction pathways [review].Free Radic Biol Med. 1996;21:323–333.CrossRefPubMedGoogle Scholar
  190. 190.
    Huang RP, Wu JX, Fan Y, Adamson ED. UV activates growth factor receptors via reactive oxygen intermediates.J Cell Biol. 1996;133:211–220.CrossRefPubMedGoogle Scholar
  191. 191.
    Lotem J, Peled-Kamar M, Groner Y, Sachs L. Cellular oxidative stress and the control of apoptosis by wild-type p53, cytotoxic compounds, and cytokines.Proc Natl Acad Sci U S A. 1996;93:9166–9171.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis.Nature. 1997;389:300–305.CrossRefPubMedGoogle Scholar
  193. 193.
    Beckman KB, Ames BN. Oxidants, antioxidants, and aging. In: Scandalios JG, ed.Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Plainview, NY: CSHL Press; 1997:201–246.Google Scholar
  194. 194.
    Taub J, Lau JF, Ma C, et al. A cytosolic catalase is needed to extend adult lifespan in C-elegans daf-C and clk-1 mutants.Nature. 1999;399:162–166.CrossRefPubMedGoogle Scholar
  195. 195.
    Cross AR, Jones OT. Enzymic mechanisms of superoxide production [review].Biochim Biophys Acta. 1991;1057:281–298.CrossRefPubMedGoogle Scholar
  196. 196.
    Wientjes FB, Segal AW. NADPH oxidase and the respiratory burst [review].Semin Cell Biol. 1995;6:357–365.CrossRefPubMedGoogle Scholar
  197. 197.
    Ohba M, Shibanuma M, Kuroki T, Nose K. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells.J Cell Biol. 1994;126:1079–1088.CrossRefPubMedGoogle Scholar
  198. 198.
    Bae YS, Kang SW, Seo MS, et al. Epidermal growth factor (EGF)- induced generation of hydrogen peroxide. Role in EGF receptormediated tyrosine phosphorylation.J Biol Chem. 1997;272:217–221.CrossRefPubMedGoogle Scholar
  199. 199.
    Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction.Science. 1995;270:296–299.CrossRefPubMedGoogle Scholar
  200. 200.
    Sattler M, Winkler T, Verma S, et al. Hematopoietic growth factors signal through the formation of reactive oxygen species.Blood. 1999;93:2928–2935.PubMedGoogle Scholar
  201. 201.
    Suh Y-A, Arnold RS, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase Mox1.Nature. 1999;401:79–82.CrossRefPubMedGoogle Scholar
  202. 202.
    Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells.Nature. 2000;407:390–395.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Lander HM, Hajjar DP, Hempstead BL, et al. A molecular redox switch on p21ras. Structural basis for the nitric oxide-p21ras interaction.J Biol Chem. 1997;272:4323–4326.CrossRefPubMedGoogle Scholar
  204. 204.
    Tauchi T, Ohyashiki, K, Yamashita Y, Sugimoto S, Toyama K. SH2- containing phosphotyrosine phosphatase SHP-1 is involved in BCR-ABL signal transduction pathways.Int J Oncol. 1997;11:471–475.PubMedGoogle Scholar
  205. 205.
    Tauchi T, Feng GS, Shen R, et al. SH2-containing phosphotyrosine phosphatase syp is a target of p210bcr-abl tyrosine kinase.J Biol Chem. 1994;269:15381–15387.PubMedGoogle Scholar
  206. 206.
    Sun Y, Oberley LW. Redox regulation of transcriptional activators.Free Radic Biol Med. 1996;21:335–348.CrossRefPubMedGoogle Scholar
  207. 207.
    Xanthoudakis S, Miao G,Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme.EMBO J. 1992;11:3323–3335.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Dreher D, Junod AF. Role of oxygen free radicals in cancer development.Eur J Cancer. 1996;32A:30–38.CrossRefPubMedGoogle Scholar
  209. 209.
    Halliwell B, Aruoma OI. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems.FEBS Lett. 1991;281:9–19.CrossRefPubMedGoogle Scholar
  210. 210.
    Spencer JP, Jenner A, Chimel K, et al. DNA damage in human respiratory tract epithelial cells: damage by gas phase cigarette smoke apparently involves attack by reactive nitrogen species in addition to oxygen radicals.FEBS Lett. 1995;375:179–182.CrossRefPubMedGoogle Scholar
  211. 211.
    Pryor WA, Stone K, Zang LY, Bermudez E. Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage.Chem Res Toxicol. 1998;11:441–448.CrossRefPubMedGoogle Scholar
  212. 212.
    Yoshie Y, Ohshima H. Synergistic induction of DNA strand breakage by cigarette tar and nitric oxide.Carcinogenesis. 1997;18:1359–1363.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2001

Authors and Affiliations

  1. 1.Department of Adult Oncology, Dana-Farber Cancer Institute, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations