Phytoparasitica

, Volume 35, Issue 1, pp 23–26 | Cite as

Note: Pyrethroid resistance and possible involvement of glutathioneS-transferases inHelicoverpa armigera from Turkey

  • Sakine Ugurlu
  • Metin Konus
  • Belgin Isgor
  • Mesude Iscan
Entomology

Abstract

An introductory study was conducted to investigate the pyrethroid resistance ofHelicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) strains in Turkey, collected from cotton fields in the Adana and Antalya provinces, through two different synthetic pyrethroid insecticides: lambda-cyhalothrin and esfenvalerate. In addition, the roles of glutathioneS-transferases (GSTs) in this resistance mechanism were analyzed. It was found that whereas resistance ratios for lambda-cyhalothrin (LD50 levels) were 3- and 98-fold increased in the Adana and Antalya strains, respectively, esfenvalerate ratios were 3.3- and 92.3-fold increased in the Adana and Antalya strains, respectively, with respect to the susceptible strain. Furthermore, Adana and Antalya strains showed 2.4- and 2.9-fold higher GST activities than the susceptible strain, respectively. In the Antalya field strain, the minor increase in GST activity compared with the resistance levels implies that GSTs may be not greatly involved in this resistance. It also provides evidence that they could not be the only metabolic mechanism responsible for resistance to lambda-cyhalothrin and esfenvalerate inH. armigera from Turkey.

Key words

Helicoverpa armigera cotton pyrethroid resistance glutathioneS-transferases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anon. (1970) Standard method for detection of insecticide resistance inHeliothis zea (Boddie) andH. virescens (F.).Bull. Entomol. Soc. Am. 16:147–153.Google Scholar
  2. 2.
    Clark, A.G., Shamaan, N.A., Sinclair, M.D. and Dauterman, W.C. (1986) Insecticide metabolism by multiple glutathioneS-transferases in two strains of the housefly,Musca domestica (L.).Pest. Biochem. Physiol. 25:169–175.CrossRefGoogle Scholar
  3. 3.
    Fournier, D., Bride, J.M., Poire, M., Berge, J.B. and Plapp, F.W. Jr. (1992) Insect glutathioneS-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides.J. Biol. Chem. 267:1840–1845.PubMedGoogle Scholar
  4. 4.
    Gunning, R.V., Moores, G.D. and Devonshire, A.L. (1996) Esterases and esfenvalerate resistance in AustralianHelicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).Pest. Biochem. Physiol. 54:12–23.CrossRefGoogle Scholar
  5. 5.
    Gunning, R.V., Moores, G.D. and Devonshire, A.L. (1999) Esterase inhibitors synergise the toxicity of pyrethroids in AustralianHelicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).Pest. Biochem. Physiol. 63:50–62.CrossRefGoogle Scholar
  6. 6.
    Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974) GlutathioneS-transferases: the first enzymatic step in mercapturic acid formation.J. Biol. Chem. 249:7130–7139.PubMedGoogle Scholar
  7. 7.
    Kostaropoulos, I., Papadopoulos, A.I., Metaxakis, A., Boukouvala, E. and Papadopoulou-Maurkidou, E. (2001) GlutathioneS-transferase in the defence against pyrethroids in insects.Insect Biochem. Mol. Biol. 31:313–319.PubMedCrossRefGoogle Scholar
  8. 8.
    LeOra Software (1994) POLO-PC: A User’s Guide to Probit or Logit Analysis. LeOra Software, Berkeley, CA, USA.Google Scholar
  9. 9.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randal, R.J. (1951) Protein measurement with the folin phenol reagent.J. Biol. Chem. 248:265–275.Google Scholar
  10. 10.
    Martin, T., Chandre, F., Ochou, O.G., Vaissayre, M. and Fournier, D. (2002) Pyrethroid resistance mechanisms in the cotton bollwormHelicoverpa armigera (Lepidoptera: Noctuidae) from West Africa.Pestic. Biochem. Physiol. 74:17–26.CrossRefGoogle Scholar
  11. 11.
    McCaffery, A.R. (1998) Resistance to insecticides in heliothine Lepidoptera: a global view.Philos. Trans. R. Soc. Lond. B Biol. Sci. 353:1735–1750.CrossRefGoogle Scholar
  12. 12.
    Parkes, T.L, Hilliker, A.J. and Phillips, J.P. (1993) Genetic and biochemical analysis of glutathioneS-transferases in the oxygen defence system ofDrosophila melanogaster.Genome 36:1007–1014.PubMedCrossRefGoogle Scholar
  13. 13.
    Qiu, X.-H. and Leng, X.-F. (2000) The tissue distribution of monooxygenase activities of the cotton bollworm,Helicoverpa armigera.Acta Ecol. Sin. 20:299–303 (Chinese, with English abstr.).Google Scholar
  14. 14.
    Ranson, H., Prapanthadara, L. and Hemingway, J. (1997) Cloning and characterization of two glutathioneS-transferases from a DDT resistant strain ofAnopheles gambiae.Biochem. J. 324:97–102.PubMedGoogle Scholar
  15. 15.
    Salinas, A.E. and Wong, M.G. (1999) GlutathioneS-transferases — a review.Curr. Med. Chem. 6:279–309.PubMedGoogle Scholar
  16. 16.
    Sawicki, R., Singh, S.P., Mondal, A.K., Benes, H. and Zimniak, P. (2003) Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathioneS-transferases fromDrosophila melanogaster, and identification of additional nine members of the Epsilon class.Biochem. J. 370:661–669.PubMedCrossRefGoogle Scholar
  17. 17.
    Vontas, J.G., Small, G.J. and Hemingway, J. (2001) GlutathioneS-transferases as antioxidant defence agents confer pyrethroid resistance inNilaparvata lugens.Biochem. J. 357:65–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, J.Y., McCommas, S. and Syvanen, M. (1991) Molecular cloning of a glutathioneS-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica).Mol. Gen. Genet. 227:260–266.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu, Y. and Shen, J. (1996) Characteristics of fenvalerate resistance inHelicoverpa armigera (Hübner) from China.Resistant Pest Manag. Newsl. 8(1):25–27.Google Scholar
  20. 20.
    Yang, E., Yang, Y., Wu, S. and Wu, Y. (2005) Relative contribution of detoxifying enzymes to pyrethroid resistance in a resistant strain ofHelicoverpa armigera.J. Appl. Entomol. 129:521–525.CrossRefGoogle Scholar
  21. 21.
    Yang, Y., Wu, Y., Chen, S., Devine, G.J., Denholm, I., Jewess, P.et al. (2004) The involvement of microsomal oxidases in pyrethroid resistance inHelicoverpa armigera from Asia.Insect Biochem. Mol. Biol. 34:763–773.PubMedCrossRefGoogle Scholar
  22. 22.
    Yu, S.J. (1995) Tissue-specific expression of glutathione transferase isozymes in fall armyworm larvae.Pestic. Biochem. Physiol. 53:164–171.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Sakine Ugurlu
    • 1
  • Metin Konus
    • 2
  • Belgin Isgor
    • 3
  • Mesude Iscan
    • 2
  1. 1.Plant Protection Central Research InstituteAnkaraTurkey
  2. 2.Dept. of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  3. 3.Dept. of Material EngineeringAtılım UniversityAnkaraTurkey

Personalised recommendations