Anti-oxidative and photo-protective effects of coumarins isolated fromFraxinus chinensis

  • Bum-Chun Lee
  • So Yong Lee
  • Hwa Jeong Lee
  • Gwan-Sub Sim
  • Jin-Hui Kim
  • Jin-Hwa Kim
  • Young-Ho Cho
  • Dong-Hwan Lee
  • Hyeong-Bae Pyo
  • Tae-Boo Choe
  • Dong Cheul Moon
  • Yeo Pyo Yun
  • Jin Tae Hong
Article

Abstract

Free radicals and reactive oxygen species (ROS), which are generated by UV irradiation, may cause serious injury to skin cell membranes, DNA and functional proteins. In addition, these agents stimulate the expressions of matrix metalloproteinases (MMPs), which can degrade most components of the extracellular matrix (ECM), including collagen. In order to develop new anti-photoaging agents, five major components from the extract ofFraxinus chinensis extract (FCE) were identified. Two of the major components of FCE were found to be esculin (11.2%) and esculetin (1.9%). FCE (IC50: 50.0 μg/mL 1, 1-diphenyl-2-picrylhydrazyl (DPPH); 19.8 μg/mL, Superoxide anion radical) and esculetin (IC50: 2.1 μg/mL DPPH; 0.6 μg/mL, superoxide anion radical) showed strong antioxidative activities. Of the compounds tested, esculetin showed the strongest scavenging activity against DPPH radicals, followed by Superoxide anions from the xanthine/xanthine oxidase system. The intracellular ROS scavenging activity showed that oxidation of 5-(6-)-chloromethyl-2′, 7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) was effectively inhibited by esculetin, with potent free radical scavenging activity was also shown in UVB-irradiated human dermal fibroblasts (HDFs). Moreover, treatment of UVA-irradiated HDFs with esculetin resulted in dose-dependent decreases in the expression levels of MMP-1 mRNA and protein. From these results, FCE and one of its components, esculetin, were predicted to be potentially useful as ingredients in cosmetics for protecting against photoaging.

Keywords

Fraxinus chinensis Coumarins Antioxidant MMP-1 Anti-photoaging 

References

  1. Bae, J. T., Sim, G S., Lee, D. H., Lee, B. C, Pyo, H. B., Choe, T. B., and Yun, J. W., Production of expolysaccharide from mycelial culture ofGrifola frondosa and inhibitory effect on matrix metalloproteinase-1 expression in UV-irradiated human dermal fibroblast.FEMS Microbiol. Lett., 251, 347–354 (2005).PubMedCrossRefGoogle Scholar
  2. Blois, M.S., Antioxidant determinations by the use of a stable free radical.Nature, 181, 1199–1200 (1958).CrossRefGoogle Scholar
  3. Borges, F., Roleira, F., Mihazes, N., Santana, L, and Uriarte, E., Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity.Curr. Med. Chem., 12, 887–916 (2005).PubMedCrossRefGoogle Scholar
  4. Brenneisen, P., Sies, H., and Scharffetter-Kochanek, K., Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events.Ann. New York Acad. Sci., 973, 31–43 (2002).CrossRefGoogle Scholar
  5. Chi, Y S., Heo, M. Y, Chung, J. H., Jo, B. K., and Kim, H. P., Effects on the chestnut inner shell extract on the expression of adhesion molecules, fibronectin and vitronectin, of skin fibroblasts in culture.Arch. Pharm. Res., 25, 469–474 (2002).PubMedCrossRefGoogle Scholar
  6. Choi, M. S., Yoo, M. S., Son, D. J., Jung, H. Y, Lee, S. H., Jung, J. K., Lee, B. C, Yun, Y P., Pyo, H. B., and Hong, J. T., Increase of collagen synthesis by obovatol through stimulation of the TGF-â signaling and inhibition of matrix metalloproteinase in UVB-irradiated human fibroblast.J. Dermatol. Sci., 46, 127- 137 (2007).PubMedCrossRefGoogle Scholar
  7. Chung, J. H., Hanft, V. N., and Kang, S., Aging and photoaging.J. Am. Acad. Dermatol., 49, 690–697 (2003).PubMedCrossRefGoogle Scholar
  8. Chun, J. H., Kang, S. W, Varani, J., Lin, J., Fisher, G. J., and Voorhees, J. J., Decreased extracellular-signal regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo.J. Invest. Dermatol., 115, 177- 182 (2000).CrossRefGoogle Scholar
  9. Fisher, G J., Kang, S. W., Varani, J., Bata-Csorgo, Z., Wan, Y S., Datta, S., and Voorhees, J. J., Mechanisms of photoaging and chronological skin aging.Arch. Dermatol., 138, 1462- 1470 (2002).PubMedCrossRefGoogle Scholar
  10. Fisher, G J., Kang, S. W., and Voorhees, J. J., Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo.J. Clin. Invest., 101, 1432–1440 (1998).PubMedCrossRefGoogle Scholar
  11. Furuno, K., Akasako, T., and Sugihara, N., The contribution of the pyrogallol moiety to the Superoxide radical scavenging activity of flavonoids.Pharm. Bull., 25, 19–23 (2002).CrossRefGoogle Scholar
  12. Gilchrest, B. A., Garmyn, M., and Yaar, M., Aging and photoaging affect gene expression in cultured human keratinocytes.Arch. Dermatol., 130, 26–86 (1994).CrossRefGoogle Scholar
  13. Halliwell, B. and Gutterdge, J. M. C, Free radicals in biology and medicine: Third edition, Oxford Science Publications, pp. 22–32,(1999).Google Scholar
  14. Hoult, J. R. and Paya, M., Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential.Gen. Pharmacol., 27, 713–722 (1996).PubMedGoogle Scholar
  15. Huang, C, Ma, W. Y, Dawson, M. I., Rincon, M., Flavell, R. A, and Dong, Z., Blocking activator protein-1 activity, but not activation retinoic acid response element, is required for the antitumor promotion effect of retinoic acid.Proc. Natl. Acad. Sci. U.S.A., 94, 5826–5830 (1997).PubMedCrossRefGoogle Scholar
  16. Jurkiewicz, B. A., Bissett, D. L., and Buttner, G R., Effect of topically applied tocopherol on ultraviolet radiation-mediated free radical damage in skin.J. Invest. Dermatol., 104, 484–488 (1995).PubMedCrossRefGoogle Scholar
  17. Kaneko, T., Baba, N., and Matsuo, M., Protection of coumarins against linoleic acid hydroperoxide induced cytotoxicity.Chem. Biol. Interact, 142, 239–254 (2003).PubMedCrossRefGoogle Scholar
  18. Kim, J. G, Hwang, J. S., Cho, Y K., Han, Y G, Jeon, Y J., and Yang, K. H., Protective effects of (-)-epigallocatechin-3-gallate on UVA- and UVB- induced skin damage.Skin Pharmacol. Appl. Skin Physiol., 14, 11–19 (2001).PubMedCrossRefGoogle Scholar
  19. Kim, J. H., Lee, B. C, Kim, J. H., Sim, G S., Lee, D. H., Lee, K. E., Yun, Y. P. and Pyo, H. B., Isolation and antioxidative effects of the vitexin fromAcer palmatum.Arch. Pharm. Res., 28, 195–202 (2005).PubMedCrossRefGoogle Scholar
  20. Kontogiorgis, C. A., Savvoglou, K., and Hadjipavlou-Litina, D. J., Antiinflamatory and antioxidant evaluation of novel coumarin derivatives.J. Enzyme Inhib. Med. Chem., 21, 21–29 (2006).PubMedCrossRefGoogle Scholar
  21. Lacy, A. and O’Kennedy, R., Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer.Curr. Pharm. Des., 10, 3797- 3811 (2004).PubMedCrossRefGoogle Scholar
  22. Liu, R. Sun, Q., Sun, A., and Cui, J., Isolation and purification of coumarin compounds from Cortex fraxinus by high-speed countercurrent chromatography.J. Chromatogr. A., 1072, 195–199 (2005).PubMedCrossRefGoogle Scholar
  23. Matsuda, H., Tomohiro, N., Ido, Y, and Kubo, M., Anti-allergic effects of Cnidii monnieri fructus (dried fruits ofCnidium monnieri) and its major component,Osthol. Pharm. Bull., 25, 809–812 (2002).CrossRefGoogle Scholar
  24. Naqui, A., Chance, B., and Cadenas, E., Reactive oxygen intermediate in biochemistry.Annu. Rev. Biochem., 55, 137- 166 (1986).PubMedCrossRefGoogle Scholar
  25. Norins, A. L., Free radical formation in the skin following exposure to ultraviolet light.J. Invest. Dermatol., 39, 445–448 (1962).PubMedGoogle Scholar
  26. Rittie, L. and Fisher, G. J., UV-light-induced signal cascades and skin aging.Ageing Res. Rev, 1, 705–720 (2002).PubMedCrossRefGoogle Scholar
  27. Sim, G S., Lee, B. C, Choi, M. S., Lee, J. W., Kim, J. H., Lee, D. H., Kim, J. H., Pyo, H. B., Yun, Y. P., and Hong, J. T., Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast.Arch. Pharm. Res., 30, 290–298 (2007).PubMedCrossRefGoogle Scholar
  28. Sohn, J. H., Han, K. L., Lee, S. H., and Hwang, J. K., Protective effects of Panduratin A against oxidative damage of tertbutylhydroperoxide in human HepG2 cells.Pharm. Bull., 28, 1083–1086 (2005).CrossRefGoogle Scholar
  29. Trayner, I. D., Rayner, A. P., Freeamn, G E., and Farzaneh, F., Quantitative multiwell myeloid differentiation assay using dichlorodihydrofluorescein diacetate (H2DCFDA) or dihydrorhodamine 123 (H2R123).J. Immunol. Methods., 186, 275- 284 (1995).PubMedCrossRefGoogle Scholar
  30. Wu, C. R., Huang, M. Y, Lin, Y. T., Ju, H. Y, and Ching, H., Antioxidative properties of Cortex Fraxini and its simple coumarins.Food Chem., 104, 1464–1471 (2007)CrossRefGoogle Scholar
  31. Yaar, M. and Gilchrest, B. A., Aging versus photoaging: postulated mechanisms and effectors.J. Investig. Dermatol. Symp. Proc., 3, 47–51 (1998).PubMedGoogle Scholar
  32. Zhang, D. M., Wang, L L, Li, J., and Hu, L. H., Two Coumarins fromFraxinus chinensis Rexb.J. Inte. Plant Biology., 49, 218–221 (2007).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Bum-Chun Lee
    • 3
  • So Yong Lee
    • 1
  • Hwa Jeong Lee
    • 1
  • Gwan-Sub Sim
    • 2
  • Jin-Hui Kim
    • 2
  • Jin-Hwa Kim
    • 2
  • Young-Ho Cho
    • 2
  • Dong-Hwan Lee
    • 2
  • Hyeong-Bae Pyo
    • 2
  • Tae-Boo Choe
    • 4
  • Dong Cheul Moon
    • 1
  • Yeo Pyo Yun
    • 1
  • Jin Tae Hong
    • 1
  1. 1.College of PharmacyChungbuk National UniversityCheongju, ChungbukRepbulic of Korea
  2. 2.R&D CenterHanbul Cosmetics Co. Ltd.UmsungKorea
  3. 3.Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tupper Medical BuildingDalhousie UniversityHalifaxCanada
  4. 4.Division of Chemical and Biological EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations