Advertisement

N-acetyicysteine prevents lps-lnduced pro-inflammatory cytokines and mmp2 production in gingival fibroblasts

  • Do Young Kim
  • Ji-Hae Jun
  • Hye-Lim Lee
  • Kyung Mi Woo
  • Hyun-Mo Ryoo
  • Gwan-Shik Kim
  • Jeong-Hwa Baek
  • Soo-Boo Han
Article

Abstract

Periodontitis is an inflammatory process that ultimately results in tooth loss. Although the primary etiologic agent for periodontitis is bacteria, the majority of periodontal tissue destruction is thought to be caused by an inappropriate host response. Reactive oxygen species (ROS) have been known to be involved in periodontal tissue destruction. We treated human gingival fibroblasts with lipopolysaccharide (LPS) obtained fromE. coli and the periodontopathogensActinobacillus actinomycetemcomitans andPorphyromonas gingivalis, and examined their inflammatory responses in the presence and absence of the antioxidant N-acetylcysteine (NAC). LPS enhanced ROS production, as well as, expression of pro-inflammatory cytokines such as interleukin-1β, interleukin-6, interleukin-8 and tumor necrosis factor-α, and the production and activation of MMP2. NAC suppressed all LPS-induced inflammatory responses examined, suggesting that LPS-induced ROS may play a major regulatory role in these responses in gingival fibroblasts. In addition, NAC prevented LPS-induced activation of p38 MAPK and JNK but not phosphorylation and subsequent degradation of IkB. These results indicate that NAC exerts anti-inflammatory effects in LPS-stimulated gingival fibroblasts, functioning at least in part via down-regulation of JNK and p38 MAPK activation. Furthermore, this work suggests that antioxidants may be useful in adjunctive therapies that complement conventional periodontal treatments.

Key words

Gingival fibroblasts LPS MMP2 N-Acetylcysteine Pro-inflammatory cytokines 

References

  1. Anderson, M. T., Staal, F. J., Gitler, C, Herzenberg, L. A., and Herzenberg, L. A., Separation of oxidant-initiated and redox- regulated steps in the NF-kappa B signal transduction pathway.Proc. Natl. Acad. Sci. U.S.A., 91, 11527–11531 (1994).PubMedCrossRefGoogle Scholar
  2. Andreakos, E., Sacre, S. M., Smith, C, Lundberg, A., Kiriakidis, S., Stonehouse, T., Monaco, C, Feldmann, M., and Foxwell, B. M., Distinct pathways of LPS-induced NF-kappa B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP.Blood, 103, 2229–2237 (2004).PubMedCrossRefGoogle Scholar
  3. Asehnoune, K., Strassheim, D., Mitra, S., Kim, J. Y, and Abraham, E., Involvement of reactive oxygen species in Toll- like receptor 4-dependent activation of NF-kappa B.J. Immunol., 172, 2522–2529 (2004).PubMedGoogle Scholar
  4. Bass, D. A., Parce, J. W., Dechatelet, L. R., Szejda, P., Seeds, M. C, and Thomas, M., Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation.J. Immunol., 130, 1910–1917 (1983).PubMedGoogle Scholar
  5. Beyaert, R., Cuenda, A., Vanden Berghe, W., Plaisance, S., Lee, J. C, Haegeman, G, Cohen, P., and Fiers, W., The p38/ RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor.EMBOJ., 15, 1914–1923 (1996).Google Scholar
  6. Birkedal-Hansen, H., Role of cytokines and inflammatory mediators in tissue destruction.J. Periodontal Res., 28, 500–510 (1993a).PubMedCrossRefGoogle Scholar
  7. Birkedal-Hansen, H., Role of matrix metalloproteinases in human periodontal diseases.J. Periodontol., 64, 474–484 (1993b).PubMedGoogle Scholar
  8. Bodet, C, Andrian, E., Tanabe, S. I., and Grenier, D., Actinoba- cillus actinomycetemcomitans lipopolysaccharide regulates matrix metalloproteinase, tissue inhibitors of matrix metallo- proteinase, and plasminogen activator production by human gingival fibroblasts: A potential role in connective tissue destruction.J. Cell. Physiol., 212, 189–194 (2007).PubMedCrossRefGoogle Scholar
  9. Brennan, P. and O’Neill, L. A., Effects of oxidants and antioxidants on nuclear factor kappa B activation in three different cell lines: evidence against a universal hypothesis involving oxygen radicals.Biochim. Biophys. Acta, 1260, 167–175 (1995).PubMedGoogle Scholar
  10. Brock, G R., Butterworth, C. J., Matthews, J. B., and Chappie, I. L. C, Local and systemic total antioxidant capacity in periodontitis and health.J. Clin. Periodontol., 31, 515–521 (2004).PubMedCrossRefGoogle Scholar
  11. Brook, M., Sully, G, Clark, A. R., and Saklatvala, J., Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade.FEBS Lett., 483, 57–61 (2000).PubMedCrossRefGoogle Scholar
  12. Chakraborti, S., Mandal, M., Das, S., Mandal, A., and Chakraborti, T., Regulation of matrix metalloproteinases: an overview.Mol. Cell. Biochem., 253, 269–285 (2003).PubMedCrossRefGoogle Scholar
  13. Chapple, I. L. and Matthews, J. B., The role of reactive oxygen and antioxidant species in periodontal tissue destruction.Periodontol 2000., 43, 160–232 (2007).PubMedCrossRefGoogle Scholar
  14. Chappie, I. L. C, Brock, G, Eftimiade, C, and Matthews, J. B., Glutathione in gingival crevicular fluid and its relation to local antioxidant capacity in periodontal health and disease.Mol. Pathol., 55, 367–373 (2002).CrossRefGoogle Scholar
  15. Cho, S. Y, Park, S. J., Kwon, M. J., Jeong, T. S., Bok, S. H., Choi, W. Y, Jeong, W. I., Ryu, S. Y, Do, S. H., Lee, C. S., Song, J. C, and Jeong, K. S., Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-kappaB pathway in lipopolysaccharide-stimulated macrophage.Mol. Cell. Biochem., 243, 153–160 (2003).PubMedCrossRefGoogle Scholar
  16. Creemers, L. B., Jansen, I. D., Docherty, A. J., Reynolds, J. J., Beertsen, W., and Everts, V, Gelatinase A (MMP-2) and cysteine proteinases are essential for the degradation of collagen in soft connective tissue.Matrix Biol., 17, 35–46 (1998).PubMedCrossRefGoogle Scholar
  17. De la Fuente, M. and Victor, V. M., Anti-oxidants as modulators of immune function.Immunol. Cell Biol., 78, 49–54 (2000).PubMedCrossRefGoogle Scholar
  18. Di Paola, R., Mazzon, E., Zito, D., Maiere, D., Britti, D., Genovese, T., and Cuzzocrea, S., Effects of Tempol, a membrane- permeable radical scavenger, in a rodent model periodontitis.J. Clin. Periodontol., 32, 1062–1068 (2005).PubMedCrossRefGoogle Scholar
  19. Galli, A., Svegliati-Baroni, G, Ceni, E., Milani, S., Ridolfi, F., Salzano, R., Tarocchi, M., Grappone, C, Pellegrini, G, Benedetti, A., Surrenti, C, and Casini, A., Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism.Hepatology, 41, 1074–1084 (2005).PubMedCrossRefGoogle Scholar
  20. Graves, D. T. and Cochran, D., The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction.J. Periodontol., 74, 391–401 (2003).PubMedCrossRefGoogle Scholar
  21. Gustafsson, A. and Asman, B., Increased release of free oxygen radicals from peripheral neutrophils in adult periodontitis after Fc delta-receptor stimulation.J. Clin. Periodontol., 23, 38–44 (1996).PubMedCrossRefGoogle Scholar
  22. Haddad, J. J., L-Buthionine-(S,R)-sulfoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, augments LPS-mediated pro-inflammatory cytokine biosynthesis: evidence for the implication of an IkappaB-alpha/NF-kappaB insensitive pathway.Eur. Cytokine Netw., 12, 614–624 (2001).PubMedGoogle Scholar
  23. Haffajee, A. D. and Socransky, S. S., Microbiology of periodontal diseases: introduction.Periodontol. 2000, 38, 9–12 (2005).PubMedCrossRefGoogle Scholar
  24. Hall, T. J., Schaeublin, M., Jeker, H, Fuller, K., and Chambers, T. J., The role of reactive oxygen intermediates in osteoclastic bone resorption.Biochem. Biophys. Res. Commun., 207, 280–287 (1995).PubMedCrossRefGoogle Scholar
  25. Heumann, D. and Roger, T., Initial responses to endotoxins and Gram-negative bacteria.Clin. Chim. Acta, 323, 59–72 (2002).PubMedCrossRefGoogle Scholar
  26. Hidding, U., Mielke, K., Waetzig, V, Brecht, S., Hanisch, U., Behrens, A., Wagner, E., and Herdegen, T., The c-Jun N- terminal kinases in cerebral microglia: immunological functions in the brain.Biochem. Pharmacol., 64, 781–788 (2002).PubMedCrossRefGoogle Scholar
  27. Hsu, H. Y and Wen, M. H., Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression.J. Biol. Chem., 277, 22131–22139 (2002).PubMedCrossRefGoogle Scholar
  28. Janssen-Heininger, Y M., Poynter, M. E., and Baeuerle, P. A., Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB.Free Radic. Biol. Med., 28, 1317–1327 (2000).PubMedCrossRefGoogle Scholar
  29. Karin, M., Signal transduction from cell surface to nucleus in development and disease.FASEBJ., 6, 2581–2590 (1992).Google Scholar
  30. Kim, S. H., Kim, J., and Sharma, R. P., Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression.Pharmacol. Res., 49, 433–439 (2004).PubMedCrossRefGoogle Scholar
  31. Kimura, S., Yonemura, T., and Kaya, H., Increased oxidative product formation by peripheral blood polymorphonuclear leukocytes in human periodontal diseases.J. Periodontal Res., 28, 197–203 (1993).PubMedCrossRefGoogle Scholar
  32. Korostoff, J. M., Wang, J. F, Sarment, D. P., Stewart, J. C, Feldman, R. S., and Billings, P. C, Analysis of in situ protease activity in chronic adult periodontitis patients: expression of activated MMP-2 and a 40 kDa serine protease.J. Periodontol., 71, 353–360 (2000).PubMedCrossRefGoogle Scholar
  33. Lee, N. K., Choi, Y G, Baik, J. Y, Han, S. Y, Jeong, D. W., Bae, Y. S., Kim, N., and Lee, S. Y, A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation.Blood, 106, 852–859 (2005).PubMedCrossRefGoogle Scholar
  34. Mastronarde, J. G, Monick, M. M., Mukaida, N., Matsushima, K., and Hunninghake, G W., Activator protein-1 is the preferred transcription factor for cooperative interaction with nuclear factor-kappaB in respiratory syncytial virus-induced interleukin-8 gene expression in airway epithelium.J. Infect. Dis., 177, 1275–1281 (1998).PubMedCrossRefGoogle Scholar
  35. Mathy-Hartert, M., Deby-Dupont, G P., Reginster, J. Y, Ayache, N., Pujol, J. P., and Henrotin, Y E., Regulation by reactive oxygen species of interleukin-1 beta, nitric oxide and prostaglandin E(2) production by human chondrocytes.Osteoarthritis Cartilage, 10, 547–555 (2002).PubMedCrossRefGoogle Scholar
  36. Mathy-Hartert, M., Martin, G, Devel, P., Deby-Dupont, G, Pujol, J. P., Reginster, J. Y, and Henrotin, Y, Reactive oxygen species downregulate the expression of pro-inflammatory genes by human chondrocytes.Inflamm. Res., 52, 111–118 (2003).PubMedCrossRefGoogle Scholar
  37. McCulloch, C. A. and Bordin, S., Role of fibroblast sub- populations in periodontal physiology and pathology.J. Periodontal Res., 26, 144–154 (1991).PubMedCrossRefGoogle Scholar
  38. Means, T. K., Golenbock, D. T., and Fenton, M. J., Structure and function of Toll-like receptor proteins.Life. Sci., 68, 241–258 (2000).PubMedCrossRefGoogle Scholar
  39. Minden, A. and Karin, M., Regulation and function of the JNK subgroup of MAP kinases.Biochim. Biophys. Acta, 1333, F85-F104 (1997).PubMedGoogle Scholar
  40. Morse, D., Pischke, S. E., Zhou, Z., Davis, R. J., Flavell, R. A., Loop, T., Otterbein, S. L, Otterbein, L. E., and Choi, A. M., Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1.J. Biol. Chem., 278, 36993–36998 (2003).PubMedCrossRefGoogle Scholar
  41. Nagase, H. and Woessner, J. F. Jr., Matrix metalloproteinases.J. Biol. Chem., 274, 21491–21494 (1999).PubMedCrossRefGoogle Scholar
  42. Okada, H. and Murakami, S., Cytokine expression in periodontal health and disease.Crit. Rev. Oral Biol. Med., 9, 248–266 (1998).PubMedGoogle Scholar
  43. Park, S. Y, Kim, Y H., Jun, J. H., Kim, G. S., Min, B. M., and Baek, J. H., P. gingivalis and A. actinomycetemcomitans LPS differentially regulate the expression of inflammatory cytokines and chemokines in gingival fibroblast and periodontal ligament fibroblast.Int. J. Oral Biol., 29, 7–16 (2004).Google Scholar
  44. Rajagopalan, S., Meng, X. P., Ramasamy, S., Harrison, D. G, and Galis, Z. S., Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability.J. Clin. Invest, 98, 2572–2579 (1996).PubMedCrossRefGoogle Scholar
  45. Ryan, K. A., Smith, M. F. Jr., Sanders, M. K., and Ernst, P. B., Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression.Infect. Immun., 72, 2123–2130 (2004).PubMedCrossRefGoogle Scholar
  46. Sanchez-Tillo, E., Comalada, M., Xaus, J., Farrera, C, Valledor, A. F, Caelles, C, Lloberas, J., and Celada, A., JNK1 is required for the induction of MKP1 expression in macrophages during proliferation and LPS-dependent activation.J. Biol. Chem., 282, 12566–12573 (2007).PubMedCrossRefGoogle Scholar
  47. Schreck, R., Albermann, K., and Baeuerle, P. A., Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review).Free Radic. Res. Commun., 17, 221–237 (1992).PubMedCrossRefGoogle Scholar
  48. Schubert, S. Y, Neeman, I., and Resnick, N., A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants.FASEB J., 16, 1931- 1933 (2002).PubMedGoogle Scholar
  49. Seger, R. and Krebs, E. G, The MAPK signaling cascade.FASEB J., 9, 726–735 (1995).PubMedGoogle Scholar
  50. Strassheim, D., Asehnoune, K., Park, J. S., Kim, J. Y, He, Q., Richter, D., Mitra, S., Arcaroli, J., Kuhn, K., and Abraham, E., Modulation of bone marrow-derived neutrophil signaling by H2O2: disparate effects on kinases, NF-kappaB, and cytokine expression.Am. J. Physiol. Cell Physiol., 286, C683-C692 (2004).PubMedCrossRefGoogle Scholar
  51. Tiranathanagul, S., Yongchaitrakul, T, Pattamapun, K., and Pavasant, P., Actinobacillus actinomycetemcomitans lipo- polysaccharide activates matrix metalloproteinase-2 and increases receptor activator of nuclear factor-kappaB ligand expression in human periodontal ligament cells.J. Penodontol., 75, 1647–1654 (2004).CrossRefGoogle Scholar
  52. Victor, V. M. and De la Fuente, M., N-acetylcysteine improves in vitro the function of macrophages from mice with endotoxin- induced oxidative stress.Free Radic. Res., 36, 33–45 (2002).PubMedCrossRefGoogle Scholar
  53. Victor, V. M., Rocha, M., and De la Fuente, M., N-acetylcysteine protects mice from lethal endotoxemia by regulating the redox state of immune cells.Free Radic. Res., 37, 919–929 (2003).PubMedCrossRefGoogle Scholar
  54. Winyard, P. G and Blake, D. R., Antioxidants, redox-regulated transcription factors, and inflammation.Adv. Pharmacol., 38, 403–421 (1997).PubMedCrossRefGoogle Scholar
  55. Woo, C. H., Lim, J. H., and Kim, J. H., Lipopolysaccharide induces matrix metalloproteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells.J. Immunol., 173, 6973–6980 (2004).PubMedGoogle Scholar
  56. Zafarullah, M., Li, W. Q., Sylvester, J., and Ahmad, M., Molecular mechanisms of N-acetylcysteine actions.Cell. Mol. Life Sci., 60, 6–20 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Do Young Kim
    • 1
  • Ji-Hae Jun
    • 2
  • Hye-Lim Lee
    • 2
  • Kyung Mi Woo
    • 2
  • Hyun-Mo Ryoo
    • 2
  • Gwan-Shik Kim
    • 2
  • Jeong-Hwa Baek
    • 2
  • Soo-Boo Han
    • 1
  1. 1.Department of Periodontology, School of DentistrySeoul National UniversitySeoulKorea
  2. 2.Department of Cell and Developmental Biology, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulKorea

Personalised recommendations