Advertisement

Archives of Pharmacal Research

, Volume 30, Issue 10, pp 1216–1224 | Cite as

Apoptosis-mediated cytotoxicity of ouabain, digoxin and proscillaridin A in the estrogen independent MDA-MB-231 breast cancer cells

  • Katarzyna WinnickaEmail author
  • Krzysztof Bielawski
  • Anna Bielawska
  • Wojciech Miltyk
Article

Abstract

We examined the effects of three cardiac glycosides, ouabain, digoxin and proscillaridin A, on the proliferation of estrogen independent MDA-MB-231 breast cancer cells. In terms of reduction in cell viability, the compounds rank for both 24 h and 48 h of incubation in MDA-MB-231 cells in the order proscillaridin A > digoxin > ouabain. Digoxin for 24 h and 48 h of incubation in MDA-MB-231 cells proved to be only slightly more potent than ouabain, with IC50 values of 122 ± 2 and 70 ± 2 nM, respectively, compared to 150 ± 2 and 90 ± 2 nM for ouabain. In contrast, proscillaridin A, was much more active and showed a high level of cytotoxic potency, IC50 51 ± 2 and 15 ± 2 nM for 24 h and 48 h of incubation, respectively. The concentrations of digoxin, ouabain and proscillaridin A needed to inhibit [3H]thymidine incorporation into DNA by 50% (IC50) in MDA-MB-231 cells for 24 h of incubation were found to be 124 ± 2 nM, 142 ± 2 nM, and 48 ± 2 nM, respectively. In the present study, we demonstrated that ouabain, digoxin, and proscillaridin A induce apoptosis in MDA-MB-231 cells by increasing free calcium concentration and by activating caspase-3.

Key words

Cytotoxicity Apoptosis Breast cancer MDA-MB-231 cells Ouabain Digoxin Proscillaridin A 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akimova, O. A., Bagrov, A. Y, Lopina, O. D., Kamernitsky, A. V., Tremblay, J., Hamet, P., and Orlov, S. N., Cardiotonic steroids differentially affect intracellular Na+ and [Na+]/[K+]i- independent signaling in C7-MDCK cells.J. Biol. Chem., 280, 832–839 (2005).PubMedGoogle Scholar
  2. Bielawski, K., Winnicka, K., and Bielawska, A., Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A.Biol. Pharm. Bull., 29, 1493–1497 (2006).PubMedCrossRefGoogle Scholar
  3. Blaustein, M. P., Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness.Am. J. Physiol., 264, C1367-C1387 (1993).PubMedGoogle Scholar
  4. Carmichael, J., Degraff, W., Gazdar, A., Minna, J., and Mitchell, J., Evaluation of a tetrazolinium-based semiautomated colorimetric assay: assessment of chemosensitivity testing.Cancer Res., 47, 936–942 (1987).PubMedGoogle Scholar
  5. Chen, J. Q., Contreras, R. G., Wang, R., Fernandez, S. V, Shoshani, L, Russo, I. H., Cereijido, M., and Russo, J., Sodium/potassium ATPase (Na+, K+-ATPase) and ouabain/ related cardiac glycosides: a new paradigm for development of anti-breast cancer drugs?Breast Cancer Res. Treat., 96, 1–15 (2006).PubMedCrossRefGoogle Scholar
  6. Cronauer, M. V., Hittmair, A., Eder, I. E., Hobisch, A., Culig, Z., Ramoner, R., Zhang, J., Bartsch, G., Reissigl, A., Radmayr, C., Thurnher, M., and Klocker, H., Basic fibroblast growth factor levels in cancer cells and in sera of patients suffering from proliferative disorders of the prostate.Prostate, 31, 223- 233 (1997).PubMedCrossRefGoogle Scholar
  7. Duke, R. C. and Cohen, J. J., Morphological and biochemical assays of apoptosis.Curr. Protoc. Immunol., 17, 1–16 (1992).Google Scholar
  8. Evans, W. Ch., Trease and Evan’s Pharmacognosy. London: WB Saunders, pp. 309–316 (1996).Google Scholar
  9. Eymin, B., Dubrez, L, Allouche, M., and Solary, E., Increased gadd153 messenger RNA level is associated with apoptosis in human leukemic cells treated with etoposide.Cancer Res., 57, 686–695 (1997).PubMedGoogle Scholar
  10. Florkiewicz, R. Z., Anchin, A., and Baird, A., The inhibition of fibroblast growth factor-2 export by cardenolides implies a novel function for the catalytic subunit of Na+, K+-ATPase.J. Biol. Chem., 273, 544–551 (1998).PubMedCrossRefGoogle Scholar
  11. Furuya, Y, Lundmo, P., Short, A. D., Gill, D. L., and Isaacs, J. T., The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin.Cancer Res., 54, 6167- 6175 (1994).PubMedGoogle Scholar
  12. Grynkiewicz, G, Poenie; M., and Tsien, R. Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem., 260, 3440–3450 (1985).PubMedGoogle Scholar
  13. Hashimoto, S., Jing, Y, Kawazoe, N., Masuda, Y., Nakajo, S., Yoshida, T., Kuroiwa, Y., and Nakaya, K., Bufalin reduces the level of topoisomerase II in human leukemia cells and affects the cytotoxicity of anticancer drugs.Leukemia Res., 21, 875- 883(1997).CrossRefGoogle Scholar
  14. Hauptman, P. J., Garg, R., and Kelly, R. A., Cardiac glycosides in the next millennium.Prog. Cardiovasc. Dis., 41, 247–254 (1999).PubMedCrossRefGoogle Scholar
  15. Haux, J., Lam, M., Marthinsen, A. B. L., Strickert, T., and Lundgren, S., Digitoxin, in non toxic concentrations, induces apoptotic cell death in Jurkat T cells in vitro.J. Oncol., 31, 14- 20 (1999).Google Scholar
  16. Huang, Y T., Chueh, S. C, Teng, C. M., and Guh, J. H., Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells.Bioch. Pharmacol., 67, 727–733 (2004).CrossRefGoogle Scholar
  17. Johansson, S., Lindholm, P., Gullbo, J., Larsson, R., Bohlin, L., and Claeson, P., Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells.Anticancer Drugs, 12, 475- 483 (2001).PubMedCrossRefGoogle Scholar
  18. Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London), 227, 680–685 (1970).CrossRefGoogle Scholar
  19. Lopez-Lazaro, M., de la Pena, N. P., Pastor, N., Martin-Cordero, C., Navarro, E., Cortes, F., Ayuso, M. J., and Toro, M. V., Anti-tumor activity of Digitalis purpurea subsp. heywoodii.Planta Med., 69, 701–704 (2003).PubMedCrossRefGoogle Scholar
  20. Lopez-Lazaro, M., Pastor, N., Azrak, S. S., Ayuso, M. J., Austin, C. A., and Cortes, F., Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients.J. Nat. Prod., 68, 1642–1645 (2005).PubMedCrossRefGoogle Scholar
  21. Manna, S. K., Sah, N. K., Newman, R. A., Cisneros, A., and Aggarwal, B. B., Oleandrin suppresses activation of nuclear transcription factor-kB, activator protein-1, and c-Jun NH2- terminal kinase.Cancer Res., 60, 3838–3847 (2000).PubMedGoogle Scholar
  22. Marklund, L, Behnam-Motlagh, P., Henriksson, R., and Grankvist, K., Bumetanide annihilation of amphotericin B-induced apoptosis and cytotoxicity is due to its effect on cellular K+ flux.J. Antimicrob. Chemother., 48, 781–786 (2001).PubMedCrossRefGoogle Scholar
  23. Martin, S. J., Reutelingsperger, C. P. M., McGahon, A. J., Rader, J. A., and van Schie, R. C., Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of bcl-2 and abl.J. Exp. Med, 182, 1545- 1556 (1995).PubMedCrossRefGoogle Scholar
  24. Masuda, Y., Kawazoe, N., Nakajo, S., Yoshida, T., Kuroiwa, Y., and Nakaya, K., Bufalin induces apoptosis and influences the expression of apoptosis-related genes in human leukemia cells.Leukemia Res., 19, 549–556 (1995).CrossRefGoogle Scholar
  25. McConkey, D. J., Lin, Y., Nutt, L. K., Ozel, H. Z., and Newman, R. A., Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells.Cancer Res., 60, 3807–3812 (2000).PubMedGoogle Scholar
  26. Oh, J. and Lee, K., Possible implication for an indirect interaction between basic fibroblast growth factor and Na+, K+-ATPase.Arch. Pharm. Res., 21, 707–711 (1998).PubMedCrossRefGoogle Scholar
  27. Sen, C. K., Sashwati, R., and Packer, L., Fas mediated apoptosis of human jurkat T-cells: intracellular events and potentiation by redox-active alpha-lipoic acid.Cell Death Differ, 6, 481- 491 (1999).PubMedCrossRefGoogle Scholar
  28. Smith, J. A., Madden, T., Vijjeswarapu, M., and Newman, R. A., Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU 145 by Anvirzel and its cardiac glycoside component, oleandrin.Bioch. Pharmacol., 62, 469–472 (2001).CrossRefGoogle Scholar
  29. Stenkvist, B., Bengtsson, E., Eklund, G, Eriksson, O., Holmquist, J., Nordin, B., and Westman-Naeser, S., Evidence of a modifying influence of heart glucosides on the development of breast cancer.Anal. Quant. Cytol., 2, 49-54 (1980).Google Scholar
  30. Stenkvist, B., Bengtsson, E., Dahlqvist, B., Eriksson, O., Teppo, L., and Idalan-Heikkila, J., Cardiac glycosides and breast cancer, revisited.N. Engl. J. Med., 306, 484 (1982).PubMedGoogle Scholar
  31. Stenkvist, B., Is digitalis a therapy for breast carcinoma?Oncol. Rep., 6, 493–496 (1999).PubMedGoogle Scholar
  32. Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutelingsperger, C., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V.J. Immunol. Methods, 184, 39–51 (1995).PubMedCrossRefGoogle Scholar
  33. Villa, P., Kaufmann, S. H., and Earnshaw, W. C., Caspases and caspase inhibitors.Trends Biol. Sci., 22, 388–393 (1997).CrossRefGoogle Scholar
  34. Wade, O. L., Digoxin 1785–1985. Two hundred years of digitalis.J. Clin. Hosp. Pharm., 11, 3–9 (1986).PubMedGoogle Scholar
  35. Wang, C. Y, Mayo, M. W., and Baldwin, A. S., Jr., TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kB.Science, 274, 787–789 (1996).CrossRefGoogle Scholar
  36. Watabe, M., Masuda, Y., Nakajo, S., Yoshida, T., Kuroiwa, Y., and Nakaya, K., The cooperative interaction of two different signaling pathways in response to bufalin induces apoptosis in human leukemia U937 cells.J. Biol. Chem., 271, 14067- 14073(1996).PubMedCrossRefGoogle Scholar
  37. Winnicka, K., Bielawski, K., and Bielawska, A., Cardiac glycosides in cancer research and cancer therapy.Acta Polon. Pharm., 2,109–115 (2006).Google Scholar
  38. Yeh, J. Y, Huang, W. J., Kan, S. F., and Wang, P. S., Inhibitory effects of digitalis on the proliferation of androgen dependent and independent prostate cancer cells.J. Urology, 166, 1937–1942 (2001).CrossRefGoogle Scholar
  39. Yeh, J. Y, Huang, W. J., Kann, S. F., and Wang, P. S., Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells.Prostate, 54, 112–124 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Katarzyna Winnicka
    • 1
    Email author
  • Krzysztof Bielawski
    • 1
    • 2
  • Anna Bielawska
    • 1
    • 2
  • Wojciech Miltyk
    • 1
    • 2
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyMedical University in BialystokBialystokPoland
  2. 2.Department of Medicinal Chemistry and Drug Technology, Faculty of PharmacyMedical University in BialystokBialystokPoland

Personalised recommendations