Advertisement

Archives of Pharmacal Research

, Volume 30, Issue 9, pp 1075–1079 | Cite as

Inhibition of Interleukin-2 Production by Myricetin in Mouse EL-4 T Cells

  • Young-Chang Cho
  • Goo Yoon
  • Kwang Youl Lee
  • Hyun Jin Choi
  • Bok Yun KangEmail author
Article Drug efficacy and safety

Abstract

Myricetin is a naturally occurring flavonoid that is commonly found in tea, berries, fruits, vegetables, and medicinal herbs. This study examined the effects of myricetin on the production of interlukin-2 (IL-2), a potent T cell growth factor. Treatment with myricetin significantly inhibited the secretion of the IL-2 protein from mouse EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) in a dose-dependent manner. Flow cytometric analysis showed that myricetin suppressed the intracellular production of the IL-2 protein. Furthermore, the effects of myricetin on mRNA expression were analyzed by reverse transcription-polymerase chain reaction and it showed that myricetin reduced the expression of IL-2 mRNA induced by PMA plus Io. This suggests that myricetin has potential immunosuppressive effects by inhibiting the production of IL-2.

Key words

Myricetin, IL-2 T-cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crabtree, G. R., Contingent genetic regulatory events in T lymphocyte activation.Science, 243, 355–361 (1989).PubMedCrossRefGoogle Scholar
  2. De Whalley, C. V., Rankin, S. M., Hoult, J. R., Jessup, W., and Leake, D. S., Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages.Biochem. Pharmacol., 39, 1743–1750 (1990).CrossRefGoogle Scholar
  3. Diehn, M., Alizadeh, A. A., Rando, O. J., Liu, C. L., Stankunas, K., Botstein, D., Crabtree, G. R., and Brown, P. O., Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation.Proc. Natl. Acad. Sci. U.S.A., 99, 11796–11801 (2002).PubMedCrossRefGoogle Scholar
  4. Ghosh, P., Tan, T. H., Rice, N. R., Sica, A., and Young, H. A., The interleukin 2 CD28-responsive complex contains at least three members of the NF kappa B family: c-Rel, p50, and p65.Proc. Natl. Acad. Sci. U.S.A., 90, 1696–1700 (1993).PubMedCrossRefGoogle Scholar
  5. Green, D. R., Drain N., and Pinkoski, M., Activation-induced cell death in T cells.Immunol. Rev., 193, 70–81 (2003).PubMedCrossRefGoogle Scholar
  6. Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B., and Kromhout, D., Dietary antioxidant flavonoids and risk of coronary heart disease.Lancet, 342, 1007–1011 (1993).PubMedCrossRefGoogle Scholar
  7. Hoyos, B., Ballard, D. W., Bohnlein, E., Siekevitz, M., and Greene. W. C., Kappa B-specific DNA binding proteins: role in the regulation of human interleukin-2 gene expression. Science, 244 (1989).Google Scholar
  8. Kang, B. Y., Kim, S. H., Cho, D., and Kim, T. S., Inhibition of interleukin-12 production in mouse macrophages via decreased nuclear factor-kappaB DNA binding activity by myricetin, a naturally occurring flavonoid.Arch. Pharm. Res., 28, 274–279 (2005).PubMedCrossRefGoogle Scholar
  9. Kempuraj, D., Madhappan, B., Christodoulou, S., Boucher, W., Cao, J., Papadopoulou, N., Cetrulo, C. L., and Theoharides, T. C., Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells.Br. J. Pharmacol., 145, 9349–9344 (2005).CrossRefGoogle Scholar
  10. Kuhnau, J., The flavonoids. A class of semi-essential food components: their role in human nutrition.World Rev. Nutr. Diet, 24, 117–191(1976).PubMedGoogle Scholar
  11. Maggirwar, S. B., Harhaj, E. W., and Sun, S. C., Regulation of the interleukin-2 CD28-responsive element by NF-ATp and various NF-KB/Rel transcription factors.Mol. Cell. Biol., 17, 2605–2614(1997).PubMedGoogle Scholar
  12. Malek, T. R. and Bayer, A. L., Tolerance, not immunity, crucially depends on IL-2.Nat. Rev. Immunol. 4, 665–674 (2004).PubMedCrossRefGoogle Scholar
  13. Moien-Afshari, F., McManus B. M., and Laher, I., Immunosuppression and transplant vascular disease: benefits and adverse effects.Pharmacol. Ther., 100, 141–156 (2003).PubMedCrossRefGoogle Scholar
  14. Morgan, D. A., Ruscetti F. W., and Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows.Science, 193, 1007–1008 (1976).PubMedCrossRefGoogle Scholar
  15. Nel, A. E., T-cell activation through the antigen receptor.J. Allergy Clin. Immunol., 109, 758–770 (2002).PubMedCrossRefGoogle Scholar
  16. Ono, K., Nakane, H., Fukushima, M., Chermann, J. C., and Barre-Sinoussi, F., Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerases.Eur. J. Biochem., 190, 469–476 (1990).PubMedCrossRefGoogle Scholar
  17. Ouyang, W., Ranganath, S. H., Weindel, K., Bhattacharya, D., Murphy, T. L., Sha, W. C., and Murphy, K. M. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism.Immunity, 9, 745–755 (1998).PubMedCrossRefGoogle Scholar
  18. Rao, A., Luo, C., and Hogan, P. G., Transcription factors of the NFAT family: regulation and function.Annu. Rev. Immunol., 15, 707–747(1997).PubMedCrossRefGoogle Scholar
  19. Rooney, J. W., Sun, Y. L., Glimcher, L. H., and Hoey, T., Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T-cell receptor stimulation.Mol Cell Biol., 15, 6299–6310 (1995).PubMedGoogle Scholar
  20. Rothenberg, E. V. and Ward, S. B., A dynamic assembly of diverse transcription factors integrates activation and cell-type information for interieukin 2 gene regulation.Proc. Natl. Acad. Sci. U.S.A., 93, 9358–9365 (1996).PubMedCrossRefGoogle Scholar
  21. Shapiro, V. S., Truitt, K. E., Imboden, J. B., and Weiss. A., CD28 mediates transcriptional upregulation of the interleukin-2 (IL- 2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites.Mol. Cell. Biol., 17, 4051- 4058 (1997).PubMedGoogle Scholar
  22. Smith, K. A., Interleukin-2.Curr. Opin. Immunol. 4, 271–276 (1992).PubMedCrossRefGoogle Scholar
  23. Truneh, A., Albert, F., Golstein, P., and Schmitt-Verhulst, A. M., Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester.Nature, 313, 318–320 (1985).PubMedCrossRefGoogle Scholar
  24. Wollenweber, E., Flavones and flavonols, Chapman and Hall, London, 189–259 (1982).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Young-Chang Cho
    • 1
  • Goo Yoon
    • 1
  • Kwang Youl Lee
    • 1
  • Hyun Jin Choi
    • 1
  • Bok Yun Kang
    • 1
    Email author
  1. 1.College of Pharmacy and Drug Development Research InstituteChonnam National UniversityGwangjuKorea

Personalised recommendations