Suppression of protein kinase c and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by curcumin

  • Jen-Kun Lin
Research Articles Review


Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/ cyclooxygenase, xanthine dehydrogenase /oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C (PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and IkB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)KB and the expressions of oncogenes includingc-jun,ofos,c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction pathways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins play a pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.

Key words

Curcumin Dihydrocurcumin Curcumin-glucuronide Protein kinase C c-Jun c-Fos c-Myc Xanthine oxidase NFKIKK 


  1. Anto, R. J., Venkatraman, M., and Karunagaran, D., Inhibition of NFKB sensitizes A431 cells to epidermal growth factor-induced apoptosis, whereas its activation by ectopic expression of Rel A confers resistance.J. Biol. Chem., 278, 25490–25498 (2003).PubMedCrossRefGoogle Scholar
  2. Armstrong, B. and Doll, R., Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices.Int. J. Cancer, 15, 617–631 (1975).PubMedCrossRefGoogle Scholar
  3. Bharti, A. C., Donato, N., Singh, S., and Aggarwal, B. B: Curcumin down-regulates the constitutive activation of nuclear factorKB and IKBα kinase in human multiple myeloma cells leading to suppression of proliferation and induction of apoptosis.Blood, 101, 1053–1062 (2003).PubMedCrossRefGoogle Scholar
  4. Chan, M. M. Y., Huang, H. I., Fenton, M. R., and Fong, D.,In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties.Biochem Pharmacol, 55, 1955–1962 (1998).PubMedCrossRefGoogle Scholar
  5. Chen, C. M. and Fang, H. C., Chemical Analysis of the active principles of Curcuma species, in:Modern Treatise on Chinese Herbal Medicines, C.Y. Sung (ed), The Institute of Pharmaceutical Sciences, Medical Academia, Beijing, China, Vol. III, pp 95–105, (1997).Google Scholar
  6. Chen, W. J. and Lin, J. K., Induction of G1 arrest and apoptosis in human Jarkat T cells by pentagalloylglucose through inhibiting proteasome activity and elevating p27, p21 and bax protein.J. Biol. Chem., 279, 13496–13525 (2004).PubMedCrossRefGoogle Scholar
  7. Chen, Y. C., Kuo, T. C., Lin-Shiau, S. Y., and Lin, J. K., Induction of HSP70 gene expression by modulation of calcium ion and cellular p53 protein by curcumin in colorectal carcinoma cells.Mol Carcinogenesis 17, 224–234 (1996).CrossRefGoogle Scholar
  8. Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., Shen, T. S., Ko, J. Y., Lin, J. T., Lin, B. R., Ming-Shiang, W., Yu, H. S., Jee, S. H., Chen, G. S., Chen, T. M., Chen, C. A., Lai, M. K., Pu, Y. S., Pan, M. H., Wang, Y. J., Tsai, C. C., and Hsieh, C. Y., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high risk or pre-malignant lesion.Anti-cancer Res., 21, 2895–2900 (2001).Google Scholar
  9. Chuang, S. E., Kuo, M. L., Hsu, C. H., Chen, C. R., Lin, J. K., Lai, G. M., Hsieh, C. Y., and Cheng, A. L., Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis.Carcinogenesis, 21, 331–335 (2000).PubMedCrossRefGoogle Scholar
  10. Chun, K. S., Keum, Y. S., Han, S. S., Song, Y. S., Kim, S. H., and Sum, Y. J., Curcumin inhibits phorbal ester-induced expression of cyclooxygenase-2 in mouse skin through expression of extracellular signal-regulated kinase activity and NFKB activation.Carcinogenesis, 24, 1515–1524 (2003).PubMedCrossRefGoogle Scholar
  11. Conney, A. H., Lou, Y. R., Xie, J. G., Osawa, T., Newmark, H. L., Liu, Y., Chang, R. L., and Huang, M. T., Some perspectives on dietary inhibition of carcinogenesis: Studies with curcumin and tea.Proc. Soc. Exp. Biol. Med., 216, 234–245 (1997).PubMedGoogle Scholar
  12. Conney, A. H., Lysz, T., Ferraro, T., Abidi, T. F., Manchand, P. S., Laskin, J. D., and Huang, M. T., Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin.Adv Enzyme Regul, 31, 385–389 (1991).PubMedCrossRefGoogle Scholar
  13. Deeb, D., Xu, Y. X., Jiang, H., Gao, X., Janakiraman, N., Chapman, R. A., and Gautam, S. C., Curcumin enhances tumor necrosis factor-related apoptosis-inducing-ligand-induced apoptosis in LNCaP prostate cancer cells.Mol. Cancer Ther., 2, 95–103 (2003).PubMedGoogle Scholar
  14. Dinkova-Kostova, A., Holtzclaw, W. D., Cole, R. N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., and Talalay, P., Direct evidence that sulfhydryl groups of Keap 1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and antioxidants.Proc. Nat. Acad. Sci. U.S.A., 99, 11908–11913 (2002).CrossRefGoogle Scholar
  15. Dinkova-Kostova, A. and Talalay, P., Relation of structure of curcumin alalogs to their potencies as inducers of phase 2 detoxification enzymes.Carcinogenesis, 20, 911–914 (1999).PubMedCrossRefGoogle Scholar
  16. Gopalakrishna, R. and Gundimeda, U., Antioxidant regulating protein kinase C in cancer prevention.J. Nutr., 132, 3819s-3823s (2002).PubMedGoogle Scholar
  17. Gopalakrishna, R. and Jaken, S., Protein kinase C signaling and oxidative stress.Free Radic. Biol. Med., 28, 1349–1361 (2000).PubMedCrossRefGoogle Scholar
  18. Haystead, T. A., Sim, A. T., and Carling, D., Effects of the tumor promoter okadaic acid on intracellular protein phosphorylation and metabolism.Nature, 337, 78–81 (1989).PubMedCrossRefGoogle Scholar
  19. Huang, M. T., Smart, R. C., Wong, C. Q., and Conney, A. H. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid and ferulic acid on tumor promotion in mouse skin by 12-0 tetradecanoylphorbol-13-acetate.Cancer Res, 48, 5941–5946 (1988).PubMedGoogle Scholar
  20. Huang, M. T., Lysz, T., Ferraro, T., Abidi, T. F., Laskin, J. D., and Conney, A. H., Inhibitory effects of curcuminin vivo lipoxy-genase and cyclooxygenase activities in mouse epidermis.Cancer Res, 51, 813–819 (1991).PubMedGoogle Scholar
  21. Huang, M. T., Wang, Z. Y., Georgiadis, C. A., Laskin, J. D., and Conney, A. H., Inhibitory effect of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene.Carcinogenesis, 13, 947–954 (1992).PubMedCrossRefGoogle Scholar
  22. Huang, M. T., Lou, Y. R., Ma, W., Newmark, H. L., Reuhl, K. R., and Conney, A. H., Inhibitory effect of dietary curcumin on forestomach, duodenal and colon carcinogenesis in mice.Cancer Res, 54, 5841–5847 (1994).PubMedGoogle Scholar
  23. Huang, M. T., Ma, W., Lu, Y. P., Chang, R. L., Fischer, C., Manchand, P. S., Newmark, H. L., and Conney, A. H., Effects of curcumin, demethoxycurcumin,bisdemethoxycurcumin and tetrahydrocurcumin on TPA-induced tumor promotion.Carcinogenesis, 16, 2493–2497 (1995).PubMedCrossRefGoogle Scholar
  24. Huang, M. T., Ma, W., Yen, P., Xie, J. G., Han, J., Fenkel, K. D., Grunberger, K. D., and Conney, A. H., Inhibitory effects of topical application of low doses of curcumin on TPA-induced tumor promotion and oxidized DNA bases in mouse epidermis.Carcinogenesis, 18, 83–88 (1997).PubMedCrossRefGoogle Scholar
  25. Huang, T. S., Lee, S. C., and Lin, J. K., Suppression ofc-Jun/ AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells.Proc. Natl Acad Sci. U.S.A., 88, 5292–5296 (1991).PubMedCrossRefGoogle Scholar
  26. Inano, H., Onoda, M., Inafuku, N., Kubota, M., Kamada, Y., Osawa, T., Kobayashi, H., and Wakabayashi, K., Potent protective action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats.Carcinogenesis, 21, 1835–1841 (2000).PubMedCrossRefGoogle Scholar
  27. Ireson, C., Jones, D. J., Orr, S., Coughtrie, M. W., Hoocock, D. J., Williams, M. L., Farmer, P. B., Steward, W. P., and Gescher, A., Metabolism of the Cancer chemopreventive agent curcumin in human and rat intestine.Cancer Epidermiol. Biomarkers Prev., 11, 105–111 (2002).Google Scholar
  28. Ireson, C., Orr, S., Jones, D. J., Verschoyle, R., Lim, C. K., Luo, J. L., Howells, L., Plummer, S., Jukes, R., Williams, M., Steward, W. P., and Gescher, A., Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the ratin vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production.Cancer Res., 61, 1058–1064 (2001).PubMedGoogle Scholar
  29. Jana, N. R., Dikshit, P., Goswami, A., and Nukina, W., Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway.J. Biol. Chem., 279, 11680–11685 (2004).PubMedCrossRefGoogle Scholar
  30. Jiang, M. C., Yang-Yen, H. F., Yen, J. J., and Lin, J. K., Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines.Nutr Cancer, 26, 111–120 (1996).PubMedCrossRefGoogle Scholar
  31. Korutla, L., Cheung, J. Y., Mendelsohn, J., Kumar, R., Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin.Carcinogenesis, 16, 1741–1745 (1995).PubMedCrossRefGoogle Scholar
  32. Korutla, L. and Kumar, R., Inhibitory effects of curcumin on epidermal growth factor receptor kinase activity in A431 cellls.Biochim Biophys Acta, 1224, 597–600 (1994).PubMedCrossRefGoogle Scholar
  33. Kunchandy, E. and Rao, M. N. A., Oxygen scavenging activity of curcumin.Int. J. Pharm., 38, 239–240 (1990).Google Scholar
  34. Kuo, M. L., Huang, T. S., and Lin, J. K., Curcumin, an antioxidant and anti-tumor promoter, induced apoptosis in human leukemia cells.Biochim Biophys Acta, 1317, 95–100 (1996).PubMedGoogle Scholar
  35. Lin, J. K., Huang, T. S., Huang, C. A. Shih, C. A., and Liu, J. L. Molecular mechanism of action of curcumin, in:Food Phyto-Chemicals for Cancer Prevention II. ACS Symposium Series 547, C. T. Ho, T. Osawa, M. T. Huang, and R. T. Rosen (eds), Amercian Chemical Society, Washington, D. C., pp. 196–203 (1994).Google Scholar
  36. Lin, J. K. and Lin-Shiau, S. Y., Cancer chemoprevention by curcumin.Proc. Natl. Sci. Counc. Repub. China B, 25, 59–66 (2001).PubMedGoogle Scholar
  37. Lin, J. K. and Shih, C. A., Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by TPA in NIH 3T3 cells.Carcinogenesis, 15, 1717–1721 (1994).PubMedCrossRefGoogle Scholar
  38. Lin, L. I., Ke, Y. F., Ko, Y. C., and Lin J. K., Curcumin inhibits SK- Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase 9 secretion.Oncology, 55, 349–353 (1998).PubMedCrossRefGoogle Scholar
  39. Liu, J. Y., Lin, S. J., and Lin, J. K., Inhibitory effects of curcumin on protein kinase C activity induced by TPA in NIH 3T3 cells.Carcinogenesis, 14, 857–861 (1993).PubMedCrossRefGoogle Scholar
  40. Lu, Y. P., Cahng, R. L., Lou, Y. R., Huang, M. T., Newmark, H. L., Reuhl, K. R., and Conney, A. H., Effect of curcumin on TPA- and ultraviolet B light induced expression ofc-jun andc-fos in JB6 cells and in mouse epidermis.Carcinogenesis, 15, 2363–2370 (1994).PubMedCrossRefGoogle Scholar
  41. Manson, M. M., Gescher, A., Hudson, E. A., Plummer, S. M., Squires, M. S., and Prigent, S. A., Blocking and Suppressing mechanisms of chemoprevention by dietary constituents.Toxicol. Lett., 112-113, 499–505 (2000).PubMedCrossRefGoogle Scholar
  42. Motterlin, R., Foresti, R., Bassi, R., and Green, C. J., Curcumin, an antioxidant And anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress.Free Radic. Biol. Med., 28, 1303–1312 (2000).CrossRefGoogle Scholar
  43. Natarajan, C. and Bright, J. J., Curcumin inhibits experimental allergic encephalomyelitis by pathway in T lymphocytes.J. Immunol., 169, 6506–6513 (2002).Google Scholar
  44. Naujokat, C., and Hoffmann, S. Role and function of 26S proteasome in proliferation and apoptosis.Lab. Invst., 82, 965–980 (2002).Google Scholar
  45. Pan, M. H., Chang, W. L., Lin-Shiau, S. Y., Ho, C. T., and Lin, J. K., Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells.J. Agric. Food Chem., 49, 1464–1474 (2001).PubMedCrossRefGoogle Scholar
  46. Pan, M. H., Huang, T. M., and Lin, J. K., Biotransformation of curcumin through reduction and glucuronizationm in mice.Drug Metab Disposit, 27, 486–494 (1999).Google Scholar
  47. Phillip, S., Bulbule, A., and Kundu, G. C., Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-KB mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells.J. Biol. Chem., 276, 44926–44935 (2001).CrossRefGoogle Scholar
  48. Phillip, S. and Kandu, G. C., Osteopontin induces nuclear factorKB-mediated promatrix metalloproteinase-2 activation through lKBα/IKK signaling pathways and curcumin down regulate these pathways.J. Biol. Chem., 278, 14487–14497 (2003).CrossRefGoogle Scholar
  49. Phillips, R. L., Role of life-style and dietary habits in risk of cancer among seventh-day Adventists.Cancer Res., 35, 3513–3522 (1975).PubMedGoogle Scholar
  50. Quiles, J. L., Dolores Mesa, M., Ramirez-Tortosa, C. L., Anguilera, C. M., Battino, M., Gil, A., and Carmen Ramirez-Tortosa, M., Curcuma longa extract supplementation induces oxidative stress and attenuates aortic fatty streak development in rabbits.Arterioscler. Thromb. Vase. Biol., 22, 1225–1231 (2002).CrossRefGoogle Scholar
  51. Rao, C. V., Riven Simi, A. B., and Reddy, B. S., Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound.Cancer Res, 55, 259–266 (1995).PubMedGoogle Scholar
  52. Scapagnini, G., Foresti, R., Calabrese, V., Giuffrida Stella, A. M., Green, C. J., and Motterlin, R., Caffeic acid phenethyl ester and curcumin: A novel class of heme oxygenase-1 inducers.Mol. Pharmacol., 3, 554–561 (2002).CrossRefGoogle Scholar
  53. Sharma, R. A., Ireson, C. R., Verschoyle, R. D., Hill, K. A., Williams, M. L., Leuratti, C., Manson, M. M., Marett, L. J., Steward, W. P., and Gescher, A., Effect of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: Relationship with drug levels.Clin. Cancer Res., 7, 1452–1458 (2001).PubMedGoogle Scholar
  54. Shih, C. A. and Lin, J. K., Inhibition of 8-hydroxydeoxyguanosine formation by curcumin in mouse fibrblast cells.Carcinogenesis, 14, 709–712 (1994).CrossRefGoogle Scholar
  55. Singh, S. V., Hu, X., Srivastava, S. K., Singh, M., Xia, H., Orchard, J. L., and Zaren, H. A., Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin.Carcinogenesis, 19, 13576–1760 (1998).Google Scholar
  56. Singh, S., and Aggarwal, B. B., Activation of transcription factor NFKB is suppressing by curcumin.J. Biol. Chem., 270, 24995–25000 (1995).PubMedCrossRefGoogle Scholar
  57. Sporn, M. B. and Roberts, A. B., Peptide growth factors are multifunctional.Nature, 332, 217–219 (1988).PubMedCrossRefGoogle Scholar
  58. Squires, M. S., Hidson, E. A., Howells, L., Sale, S., Houghton, C. E., Jones, J. L., Fox, L. H., Dickens, M., Prigent, S. A., and Manson, M. M., Relevance of mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells.Biochem. Pharmacol., 65, 361–376 (2003).PubMedCrossRefGoogle Scholar
  59. Sreejayan Rao, M.N.A. Curcuminoids as potent inhibitors of lipid peroxidation.J. Pharm. Pharmacol., 46, 1013–1016 (1994).Google Scholar
  60. Subramanian, M., Sreejayan Rao, M. N. A., Devasagyam, T. P. A., and Singh, B. B., Diminution of singlet oxygen induced DNA-damage by curcumin and related antioxidants.Mutat Res, 311, 249–255 (1994).PubMedGoogle Scholar
  61. Sun, L. and Carpenter, G., Epidermal growth factor activation of NFkB is mediated through IKbα degradation and intracellular free calcium.Oncogene, 16, 2095–2102 (1998).PubMedCrossRefGoogle Scholar
  62. Woo, J. H., Kim, Y. H., Choi, Y. J., Kim, D. G., Lee, K. S., Hae, J. H., Min, D. S., Chang, J. S., Jeong, Y. J., Lee, Y. S., Park, J. W., and Kwon, J. K., Molecular mechanisms of curcumin-induced cytotoxicity: Induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt.Carcinogenesis, 24, 1199–1208 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2004

Authors and Affiliations

  1. 1.Institutes of Biochemistry, College of MedicineNational Taiwan UniversityTaipei, Taiwan

Personalised recommendations