Archives of Pharmacal Research

, Volume 27, Issue 2, pp 194–198 | Cite as

Inhibitory phlorotannins from the edible brown algaecklonia stolonifera on total reactive oxygen species (ROS) generation

  • Hye Sook Kang
  • Hae Young Chung
  • Ji Young Kim
  • Byeng Wha Son
  • Hyun Ah Jung
  • Jae Sue ChoiEmail author
Research Articles Articles


Reactive oxygen species (ROS) play an important role in the pathogenesis of many human degenerative diseases such as cancer, aging, arteriosclerosis, and rheumatism. Much attention has been focused on the development of safe and effective antioxidants. To discover sources of antioxidative activity in marine algae, extracts from 17 kinds of seaweed were screened for their inhibitory effect on total ROS generation in kidney homogenate using 2′,7′-dichlorofluorescein diacetate (DCFH-DA). ROS inhibition was seen in three species:Ulva pertusa, Symphyocladia latiuscula, andEcklonia stolonifera. At a final concentration of 25 μg/mL,U. pertusa inhibited 85.65±20.28% of total ROS generation,S. latiscula caused 50.63±0.09% inhibitory, and theEcklonia species was 44.30±7.33% inhibition.E. stolonifera Okamura (Laminariaceae), which belongs to the brown algae, has been further investigated because it is commonly used as a foodstuff in Korea. Five compounds, phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5), isolated from the ethyl acetate soluble fraction of the methanolic extract ofE. stolonifera inhibited total ROS generation.

Key words

Ecklonia stolonifera Phlorotannins Total ROS Antioxidant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altena, A. and Steinberg, P. D., Are differences in the responses between North American and Australasian marine herbivores to phlorotannins due to differences in phlorotannin structure?Biochem. Syst. Ecol., 20, 493–499 (1992).CrossRefGoogle Scholar
  2. Aruoma, O. I., Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy.Free Radical Res., 30, 419–427 (1999).CrossRefGoogle Scholar
  3. Beckman, J. S., Beckman, T. W., Chen, J., Marshell, P. A., and Freeman, B. A., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc.Natl. Acad. Sci. USA, 87, 1620–1624 (1990).CrossRefGoogle Scholar
  4. Beckman, J. S. and Koppenol, W. H., Nitric oxide, superoxide and peroxynitrite: the good, the bad and ugly.Am. J. Physiol., 271, C1424-C1437 (1996).PubMedGoogle Scholar
  5. Boettcher, A. A. and Targett, N. M., Role of polyphenolic molecular size in reduction of assimilation efficiency inXiphister mucosus.Ecology, 74, 891–903 (1993).CrossRefGoogle Scholar
  6. Branen, A. L., Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene.J. Am. Oil Chem. Soc., 52, 59–63 (1975).PubMedCrossRefGoogle Scholar
  7. Choi, J. S., Lee, J. H., Park, H. J., Kim, H. G., Young, H. S., and Mun, S. I., Screening for antioxidant activity of plant and marine algae and its active principles fromPrunus davidiana.Kor. J. Pharmacogn., 24, 299–303 (1993).Google Scholar
  8. Chung, H. Y., Kim, H. J., Jung, K. J., Yoon, J. S., Yoo, M. A., Kim, K. W., and Yu, B. P., The inflammatory process in aging.Rev. Clin. Gerontol., 10, 207–222 (2000).CrossRefGoogle Scholar
  9. Freeman, B. A., Biological sites and mechanism of free radical production, In: Armstrong D., Sohal R., Culter RG., Slater T (eds),Free radicals in molecular biology, aging, and disease, Raven Press, New York, pp. 43–52 (1984).Google Scholar
  10. Fukuyama, Y., Miura, I., Kinzyo, Z., Mori, H., Kido, M., Nakayama, Y., Takahashi, M., and Ochi, M., Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on α2-macroglobulin from the brown algaEcklonia kurome Okamura.Chem. Lett., 739–742 (1985).Google Scholar
  11. Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Kido, M., Mori, H., Nakayama, Y., and Takahashi, M., Structure of an antiplasmin inhibitor, eckol, isolated from the brown algaEcklonia kurome Okamura and inhibitory activities of its derivatives on plasma plasmin inhibitors.Chem. Pharm. Bull., 37, 349–353 (1989a).PubMedGoogle Scholar
  12. Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Mori, H., Nakayama, Y., and Takahashi, M., Anti-plasmin inhibitor. V. Structures of novel dimeric eckols isolated from the brown algaEcklonia kurome Okamura.Chem. Pharm. Bull., 37, 2438–2440 (1989b).PubMedGoogle Scholar
  13. Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Mori, H., Nakayama, Y., and Takahashi, M., Anti-plasmin inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, fromEcklonia kurome Okamura.Chem. Pharm. Bull., 38, 133–135 (1990).PubMedGoogle Scholar
  14. Han, E. S., Kim, J. W., Eom, M. O., Kang, I. H., Kang, H. J., Choi, J. S., Ha, K. W., and Oh, H. Y., Inhibitory effects ofEcklonia stolonifera on gene mutation on mouse lymphoma tk+/- locus in L5178Y-3.7.2C cell and bone marrow micronuclei formation in ddY mice.Environ. Mutagen. Carcinogen., 20, 104–111 (2000).Google Scholar
  15. Hay, M. E., Marine plant-herbivore interactions: the ecology of chemical defense.Ann. Rev. Ecol. Syst., 19, 111–145 (1988).CrossRefGoogle Scholar
  16. Hermann, M., Kapiotis, S., Hofbauer, R., Exner, M., Seelos, C., Held, I., and Gmeiner, B., Salicylate inhibits LDL oxidation initiated by superoxide/nitric oxide radicals.FEBS Lett., 445, 212–214 (1999).PubMedCrossRefGoogle Scholar
  17. Kang, H. S., Chung, H. Y., Jung, J. H., Son, B. W., and Choi, J. S., A new phlorotannin from the brown algaEcklonia stolonifera.Chem. Pharm. Bull., 51, 1012–1014 (2003)PubMedCrossRefGoogle Scholar
  18. Kang, K., Park, Y., Hwang, H. J., Kim, S. H., Lee, J. G., and Shin, H. C., Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agent against vascular risk factors.Arch. Pharm. Res., 26, 286–293 (2003).PubMedCrossRefGoogle Scholar
  19. Kurata, K., Taniguchi, K., Shiraishi, K., Hayama, N., Tanaka, I., and Suzuki, M., Ecklonialactone-A and -B, two unusual metabolites from the brown algaeEcklonia stolonifera Okamura.Chem. Lett., 267–270 (1989).Google Scholar
  20. Kurata, K., Taniguchi, K., Shiraishi, K., and Suzuki, M., Ecklonialactones C-F from the brown algaEcklonia stolonifera.Phytochemistry, 33, 155–159 (1993).CrossRefGoogle Scholar
  21. LeBel, C. P. and Bondy, S. C., Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes.Neurochem. Int., 17, 435–440 (1990).CrossRefGoogle Scholar
  22. Lee, J. H., Park, J. C., and Choi, J. S., The antioxidant activity ofEcklonia stolonifera.Arch. Pharm. Res., 19, 223–227 (1996a).CrossRefGoogle Scholar
  23. Lee, J. H., Oh, H. Y., and Choi, J. S., Preventive effect ofEcklonia stolonifera on the frequency of benzo(a)pyreneinduced chromosomal aberrations.J. Food Sci. Nutr., 1, 64–68 (1996b).Google Scholar
  24. Lee, J. H., Kim, N. D., Choi, J. S., Kim, Y. J., Moon, Y. H., Lim, S. Y., and Park, K. Y., Inhibitory effects of the methanolic extract of an edible brown alga,Ecklonia stolonifera and its component, phloroglucinol on aflatoxin B1 mutagenicityin vitro (Ames test) and on benzo(a)pyrene orN-methylN-nitrosourea clastogenicityin vivo (mouse micronucleus test).Nat. Prod. Sci., 4, 105–114 (1998).Google Scholar
  25. Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I., and Nakamura, T., Bactericidal activity of phlorotannins from the brown algaEcklonia kurome.J. Antimicro. Chemother., 50, 889–893 (2002).CrossRefGoogle Scholar
  26. Nagayama, K., Shibata, T., Fujimoto, K., Honjo, T., and Nakamura, T., Algicidal effect of phlorotannins from the brown algaEcklonia kurome on red tide microalgae.Aquaculture, 218, 601–611 (2003).CrossRefGoogle Scholar
  27. Nakamura, T., Nagayama, K., Uchida, K., and Tanaka, R., Antioxidant activity of phlorotannins isolated from the brown algaEisenia bicyclis.Fish. Sci., 62, 923–926 (1996).Google Scholar
  28. Nakayama, Y., Takahashi, M., Fukuyama, Y., and Kinzyo, Z., An anti-plasmin inhibitor, eckol, isolated from the brown algaEcklonia kurome Okamura.Agric. Biol. Chem., 63, 3025–3030 (1989).Google Scholar
  29. Park, D. C., Ji, C. I., Kim, S. H., Jung, K. J., Lee, T. G., Kim, I. S., Park, Y. H., and Kim, S. B., Characteristics of tyrosinase inhibitory extract fromEcklonia stolonifera.J. Fish. Sci. Tech., 3, 195–199 (2000).Google Scholar
  30. Pincemail, J. J., Free radicals and antioxidants in human diseases. In Favier AE, Cadet J., Kalyanaraman B., Fontecave M., Pierre JL. (eds) Analysis of Free radicals in Biological Systems. Birkhauser Verlag, Berlin, pp. 83–98 (1995).Google Scholar
  31. Podrez, E. A., Schmitt, D., Hoff, H. E., and Hazen, S. L., Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic formin vitro.J. Clin. Invest., 103, 1547–1560 (1999).PubMedCrossRefGoogle Scholar
  32. Singh, A., Physicochemical and physiological aspects, In: Miquel J., Quintanilha AT., Weber H. (eds),CRC handbook of free radicals and antioxidants in biomedicine Vol. I, CRC press Inc., Boca Raton, Florida, pp. 17–25 (1989).Google Scholar
  33. Squadrito, G. L. and Pryor, W. A., Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide.Free Radic. Biol. Med., 25, 392–403 (1998).PubMedCrossRefGoogle Scholar
  34. Swanson, A. K. and Druehl, L. D., Induction, exudation and the UV protective role of kelp phlorotannins.Aquatic Botany, 73, 241–253 (2002).CrossRefGoogle Scholar
  35. Taniguchi, K., Kurata, K., and Suzuki, M., Feeding-deterrent effect of phlorotannins from the brown algaEcklonia stolonifera against the abaloneHaliotis discus Hannai.Nippon Suisan Gakkaishi, 57, 2065–2071 (1991).Google Scholar
  36. Targett, N. M., Boettcher, A. A., Targett, T. E., and Vrolijk, N. H., Tropical marine herbivore assimilation of phenolic-rich plants.Oecologia, 103, 170–179 (1995).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2004

Authors and Affiliations

  • Hye Sook Kang
    • 1
  • Hae Young Chung
    • 2
  • Ji Young Kim
    • 2
  • Byeng Wha Son
    • 3
  • Hyun Ah Jung
    • 4
  • Jae Sue Choi
    • 1
    Email author
  1. 1.Faculty of Food Science and BiotechnologyPukyong National UniversityBusanKorea
  2. 2.College of PharmacyPusan National UniversityBusanKorea
  3. 3.Department of ChemistryPukyong National UniversityBusanKorea
  4. 4.Korea Maritime UniversityBusanKorea

Personalised recommendations