Inhibitory action of minocycline on lipopolysaccharide-lnduced release of nitric oxide and prostaglandin E2 in BV2 microglial cells

  • Sung-Soo Kim
  • Pil-Jae Kong
  • Bong-Seog Kim
  • Dong-Hyuk Sheen
  • Su-Youn Nam
  • Wanjoo ChunEmail author
Research Articles Articles


Microglia are the major inflammatory cells in the central nervous system and become activated in response to brain injuries such as ischemia, trauma, and neurodegenerative diseases including Alzheimer’s disease (AD). Moreover, activated microglia are known to release a variety of proinflammatory cytokines and oxidants such as nitric oxide (NO). Minocycline is a semisynthetic second-generation tetracycline that exerts anti-inflammatory effects that are completely distinct form its antimicrobial action. In this study, the inhibitory effects of minocycline on NO and prostaglandin E2 (PGE2) release was examined in lipopolysaccharides (LPS)-challenged BV2 murine microglial cells. Further, effects of minocycline on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were also determined. The results showed that minocycline significantly inhibited NO and PGE2 production and iNOS and COX-2 expression in BV2 microglial cells. These findings suggest that minocycline should be evaluated as potential therapeutic agent for various pathological conditions due to the excessive activation of microglia.

Key words

Minocycline Nitric oxide PGE2 iNOS COX-2 Microglia 


  1. Amin, A. R., Attur, M. G., Thakker, G. D., Patel, P. D., Vyas, P. R., Patel, R. N., Patel, I. R., and Abramson, S. B., A novel mechanism of action of tetracyclines: effects on nitric oxide synthases.Proc. Natl. Acad. Sci. USA, 93, 14014–14019 (1996).PubMedCrossRefGoogle Scholar
  2. Arvin, K. L., Han, B. H., Du, Y., Lin, S. Z., Paul, S. M., and Holtzman, D. M. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury.Ann. Neurol., 52, 54–61 (2002).PubMedCrossRefGoogle Scholar
  3. Bauer, M. K., Lieb, K., Schulze-Osthoff, K., Berger, M., Gebicke-Haerter, P. J., Bauer, J., and Fiebich, B. L., Expression and regulation of cyclooxygenase-2 in rat microglia.Eur. J. Biochem., 243, 726–731 (1997).PubMedCrossRefGoogle Scholar
  4. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus.J. Neuroimmunol., 27, 229–237 (1990).PubMedCrossRefGoogle Scholar
  5. Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P., and Kettenmann, H., An immortalized cell line expresses properties of activated microglial cells.J. Neurosci. Res., 31, 616–621 (1992).PubMedCrossRefGoogle Scholar
  6. Boje, K. M. and Arora, P. K., Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death.Brain Res., 587, 250–256 (1992).PubMedCrossRefGoogle Scholar
  7. Brown, D. R., Microglia and prion disease.Microsc. Res. Tech., 54, 71–80 (2001).PubMedCrossRefGoogle Scholar
  8. Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., and Peterson, P. K., Activated microglia mediate neuronal cell injury via a nitric oxide mechanism.J. Immunol., 149, 2736–2741 (1992).PubMedGoogle Scholar
  9. Davies, S. R., Cole, A. A., and Schmid, T. M., Doxycycline inhibits type X collagen synthesis in avian hypertrophic chondrocyte cultures.J. Biol. Chem., 271, 25966–25970 (1996).PubMedCrossRefGoogle Scholar
  10. De Clerck, Y. A., Shimada, H., Taylor, S. M., and Langley, K. E., Matrix metalloproteinases and their inhibitors in tumor progression.Ann. N Y Acad. Sci., 732, 222–232 (1994).PubMedCrossRefGoogle Scholar
  11. Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H., and Brosnan, C., Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease.Gila, 7, 75–83 (1993).CrossRefGoogle Scholar
  12. Du, Y., Ma, Z., Lin, S., Dodel, R. C., Gao, F., Bales, K. R., Triarhou, L. C., Chernet, E., Perry, K. W., Nelson, D. L., Luecke, S., Phebus, L. A., Bymaster, F. P., and Paul, S. M. Minocycline prevents nigrostriatal dopaminergic neurode-generation in the MPTP model of Parkinson’s disease.Proc. Natl. Acad. Sci. USA, 98, 14669–14674 (2001).PubMedCrossRefGoogle Scholar
  13. Egger, T., Schuligoi, R., Wintersperger, A., Amann, R., Malle, E., and Sattler, W., Vitamin E (alpha-tocopherol) attenuates cyclo-oxygenase 2 transcription and synthesis in immortalized murine BV-2 microglia.Biochem. J., 370, 459–467 (2003).PubMedCrossRefGoogle Scholar
  14. Gabler, W. L. and Creamer, H. R. Suppression of human neutrophil functions by tetracyclines.J. Periodontal Res., 26, 52–58 (1991).PubMedCrossRefGoogle Scholar
  15. Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., and Liu, B., Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease.J. Neurochem., 81, 1285–1297 (2002).PubMedCrossRefGoogle Scholar
  16. Gebicke-Haerter, P. J., Microglia in neurodegeneration: molecular aspects.Microsc. Res. Tech., 54, 47–58 (2001).PubMedCrossRefGoogle Scholar
  17. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., and Tannenbaum, S. R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids.Anal. Biochem., 126, 131–138 (1982).PubMedCrossRefGoogle Scholar
  18. He, Y., Appel, S., and Le, W., Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum.Brain Res., 909, 187–193 (2001).PubMedCrossRefGoogle Scholar
  19. McGeer, P. L., Itagaki, S., Boyes, B. E., and McGeer, E. G., Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains.Neurology, 38, 1285–1291 (1988).PubMedGoogle Scholar
  20. McGuire, S. O., Ling, Z. D., Lipton, J. W., Sortwell, C. E., Collier, T. J., and Carvey, P. M., Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons.Exp. Neurol., 169, 219–230 (2001).PubMedCrossRefGoogle Scholar
  21. Milner, R. and Campbell, I. L., The extracellular matrix and cytokines regulate microglial integrin expression and activation.J. Immunol., 170, 3850–3858 (2003).PubMedGoogle Scholar
  22. Nelson, P. T., Soma, L. A., and Lavi, E. Microglia in diseases of the central nervous system.Ann. Med., 34, 491–500 (2002).PubMedCrossRefGoogle Scholar
  23. Patel, R.N., Attur, M.G., Dave, M.N., Patel, I.V., Stuchin, S.A., Abramson, S.B. and Amin A.R. A novel mechanism of action of chemically modified tetracyclines: inhibition of COX-2- mediated prostaglandin E2 production.J. Immunol., 163, 3459–3467 (1999).PubMedGoogle Scholar
  24. Pocock, J. M. and Liddle, A. C., Microglial signalling cascades in neurodegenerative disease.Prog. Brain Res., 132, 555–565 (2001).PubMedCrossRefGoogle Scholar
  25. Raine, C. S., Multiple sclerosis: immune system molecule expression in the central nervous system.J. Neuropathol. Exp. Neurol., 53, 328–337 (1994).PubMedCrossRefGoogle Scholar
  26. Ramamurthy, N., Greenwald, R., Moak, S., Scuibba, J., Goren, A., Turner, G., Rifkin, B., and Golub, L., CMT/Tenidap treatment inhibits temporomandibular joint destruction in adjuvant arthritic rats.Ann. N. Y. Acad. Sci., 732, 427–430 (1994).PubMedCrossRefGoogle Scholar
  27. Rogers, J., Luber-Narod, J., Styren, S. D., and Civin, W. H., Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease.Neurobiol. Aging, 9, 339–349 (1988).PubMedCrossRefGoogle Scholar
  28. Ryan, M. E. and Ashley, R. A., How do tetracyclines work?Adv. Dent. Res., 12, 149–151 (1998).PubMedCrossRefGoogle Scholar
  29. Salimi, K., Moser, K. V., Marksteiner, J., Reindl, M., and Humpel, C., GDNF and TGF-beta1 promote cell survival in serum-free cultures of primary rat microglia.Cell Tissue Res., 312, 135–139 (2003).PubMedGoogle Scholar
  30. Sanchez Mejia, R. O., Ona, V. O., Li, M., and Friedlander, R. M., Minocycline reduces traumatic brain injury-mediated caspase- 1 activation, tissue damage, and neurological dysfunction.Neurosurgery, 48, 1393–1399; discussion 1399–1401 (2001).PubMedCrossRefGoogle Scholar
  31. Scali, C., Prosperi, C., Vannucchi, M. G., Pepeu, G., and Casamenti, F., Brain inflammatory reaction in an animal model of neuronal degeneration and its modulation by an anti-inflammatory drug: implication in Alzheimer’s disease.Eur. J. Neurosci., 12, 1900–1912 (2000).PubMedCrossRefGoogle Scholar
  32. Schulz, J. B., Matthews, R. T., and Beal, M. F., Role of nitric oxide in neurodegenerative diseases.Curr. Opin. Neurol., 8, 480–486 (1995).PubMedCrossRefGoogle Scholar
  33. Shimizu, T. and Wolfe, L. S., Arachidonic acid cascade and signal transduction.J. Neurochem., 55, 1–15 (1990).PubMedCrossRefGoogle Scholar
  34. Tikka, T., Usenius, T., Tenhunen, M., Keinanen, R., and Koistinaho, J., Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation.J. Neurochem., 78, 1409–1414 (2001).PubMedCrossRefGoogle Scholar
  35. Uitto, V. J., Firth, J. D., Nip, L. and Golub, L. M., Doxycycline and chemically modified tetracyclines inhibit gelatinase A (MMP-2) gene expression in human skin keratinocytes.Ann. N. Y.Acad. Sci., 732, 140–151 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2004

Authors and Affiliations

  • Sung-Soo Kim
    • 1
  • Pil-Jae Kong
    • 1
  • Bong-Seog Kim
    • 1
  • Dong-Hyuk Sheen
    • 1
  • Su-Youn Nam
    • 1
  • Wanjoo Chun
    • 1
    Email author
  1. 1.Department of Pharmacology, College of MedicineKangwon National UniversityChunchonKorea

Personalised recommendations