Archives of Pharmacal Research

, Volume 26, Issue 10, pp 832–839 | Cite as

Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,6-Penta-O-galloyl-β-D-glucose in murine macrophage cells

  • Sung-Jin Lee
  • Ik-Soo Lee
  • Woongchon MarEmail author
Research Articles Articles


Activated macrophages express inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and produce excessive amounts of nitric oxide (NO) and prostaglandin E2 (PGE2), which play key roles in the processes of inflammation and carcinogenesis. The root ofPaeonia lactiflora Pall., and the root cortex ofPaeonia suffruticosa Andr., are important Chinese crude drugs used in many traditional prescriptions. 1,2,3,4,6-penta-O-galloyl-β-D-glu-cose (PGG) is a major bioactive constituent of both crude drugs. PGG has been shown to possess potent anti-oxidant, anti-mutagenic, anti-proliferative and anti-invasive effects. In this study, we examined the inhibitory effects of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) isolated from the root ofPaeonia lactiflora Pall, on the COX-2 and iNOS activity in LPS-activated Raw 264.7 cells, COX-1 in HEL cells. To investigate the structure-activity relationships of gal-late and gallic acid for the inhibition of iNOS and COX-2 activity, we also examined (-)-epigal-locatechin gallate (EGCG), gallic acid, and gallacetophenone. The results of the present study indicated that PGG, EGCG, and gallacetophenone treatment except gallic acid significantly inhibited LPS-induced NO production in LPS-activated macrophages. All of the four compounds significantly inhibited COX-2 activity in LPS-activated macrophages. Among the four compounds examined, PGG revealed the most potent in both iNOS (IC50 ≈ 18 μg/mL) and COX-2 inhibitory activity (PGE2: IC50 ≈ 8 μg/mL and PGD2: IC50 ≈ 12 μg/mL), respectively. Although further studies are needed to elucidate the molecular mechanisms and structure-activity relationship by which PGG exerts its inhibitory actions, our results suggest that PGG might be a candidate for developing anti-inflammatory and cancer chemopreventive agents.

Key words

1,2,3,4,6-Penta-O-galloyl-β-D-glucose Inducible nitric oxide synthase Cyclooxy-genase-2 Anti-inflammatory activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alice, H. L., Michael, J. B., and Robert, R. G., Regulation of prostaglandin H systhase mRNA levels and prostaglandin biosynthesis by platelet-derived growth factor.J. Biol. Chem., 264, 17379–17383 (1989).Google Scholar
  2. Amiram, R., Angela, W., Ned, S., and Philip, N., Regulation of fibroblast cyclooxygenase synthesis by interleukin-1.J. Bio. Chem., 263, 3022–3024 (1988).Google Scholar
  3. Berg, J., Christoph, T., Widerna, M., and Bodenteich, A., Isoenzyme-specific cyclooxygenase inhibitors: A whole cell assay system using the human erythroleukemic cell line HEL and the human monocytic cell lin-Mono Mac 6.J. Pharmacol. Toxicol. Methods, 37, 179–186 (1997).PubMedCrossRefGoogle Scholar
  4. Bhimani, R. S., Troll, W., Grunberger, D., and Frenkel, K., Inhibition of oxidative stress in HeLa cells by chemopreventive agents.Can. Res., 53, 4528–4533 (1993).Google Scholar
  5. Cao, Y. and Prescott, S. M., Many actions of cyclooxygenase-2 in cellular dynamics and cancer.J. Cell Physiol., 190, 279–286 (2002).PubMedCrossRefGoogle Scholar
  6. Chen, Y. C., Liang, Y. C., Lin-Shiau, S. Y., Ho, C. Y., and Lin, J. K., Inhibition of TPA-induced PKC and AP-1 binding activities by Theaflavin-3,3′-digallate from black tea in NIH3T3 cells.J. Agric. Food Chem., 367, 379–388 (1999).Google Scholar
  7. Chin, K., Kurashima, Y., Ogura, T., Tajiri, H., Yoshida, S., and Esumi, H., Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells.Oncogene, 15, 437–442 (1997).PubMedCrossRefGoogle Scholar
  8. Dean, A. K., Bradley, S. R., Brian, C. V., Robert, W. L., and Harvey, R. H., TIS 10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue.J. Biol. Chem., 266, 12866–12872 (1991).Google Scholar
  9. Fujiki, H., Yoshizawa, S., Horiuchi, T., Suganuma, M., Yatsunami, J., Nishiwaki, S., Okabe, S., Nishiwaki-Matsushima, R., Okuda, T., and Sugimura, T., Anticarcinogenic effects of (-)-epigallocatechin gallate.Prev. Med., 21, 503–509 (1992).PubMedCrossRefGoogle Scholar
  10. Funk, C. D., Prostaglandins and leukotrienes: advances in eicosanoid biology.Science, 294 (5548), 1871–1875 (2001).PubMedCrossRefGoogle Scholar
  11. Hawkey, C. J., COX-2 inhibitors.Lancer, 353, 307–314 (1999).CrossRefGoogle Scholar
  12. Ho, C. T., Chen, Q., Shi, H., Zhang, K. Q., and Rosen, R. T., Antioxidative effect of polyphenol extract prepared from various Chinese teas.Prev. Med., 21, 520–525 (1992).PubMedCrossRefGoogle Scholar
  13. Ho., L.-L., Chen, W.-J., Lin-Shiau, S.-Y., and Lin, J.-K., Penta-O-galloyl-beta-D-glucose inhibits the invasion of mouse melanoma by suppressing metalloproteinase-9 through down-regulation of activator protein-1.Eur. J. Pharmacol., 453, 149–158 (2002).PubMedCrossRefGoogle Scholar
  14. Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y., and Yabu, Y. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells.Biochem. Biophys. Res. Commun., 204, 898–904 (1994)PubMedCrossRefGoogle Scholar
  15. Jenkins, D. C., Charles, I. G., Thomsen, L. L., Moss, D. W., Holmes, L. S., Baylis, S. A., Rhodes, P., Westmore, K., Emson P. C., and Moncada, S., Roles of nitric oxide in tumor growth.Proc. Natl. Acad. Sci., USA, 92, 4392–4396 (1995).PubMedCrossRefGoogle Scholar
  16. Katiyar, S. K., Agarwal, R., Zaim, M. T., and Mukhtar, H., Protection againstN-nitrosodiethylamine and benzo(α)pyrene-induced forestomach and lung tumorigenesis in A/J mice by green tea.Carcinogenesis, 14, 849–855 (1993).PubMedCrossRefGoogle Scholar
  17. Leahy, K. M., Ornberg, R. L., Wang, Y., Zwifel, B. S., Koki, A. T., and Masferrer, J. L., Cyclooxygenase-2 inhibition by celecoxib, reduces proliferation and induces apoptosis in angiogenic endothelial cellsin vivo.Cancer Res., 62, 625–631 (2002).PubMedGoogle Scholar
  18. Liang, Y C., Chen, Y C., Lin, Y L., Lin-Shiau, S. Y., Ho, C. T., and Lin, J. K., Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3,3′-digallate.Carcinogenesis, 20, 733–736 (1999).PubMedCrossRefGoogle Scholar
  19. Lin, Y. L., Juan, I. M., Chen, Y. L., Liang, Y. C., and Lin, J. K., Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with anti-proliferative actions in fibroblast cells.J. Agric. Food Chem., 44, 1387–1394 (1996).CrossRefGoogle Scholar
  20. Lin, Y. L. and Lin J. K., (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kB.Mol. Pharmacol., 52, 465–472 (1997).PubMedGoogle Scholar
  21. Liu, R. H. and Hotchkiss, J. H., Potential genotoxicity of chronically elevated nitric oxide: A review.Mutat. Res., 339, 73–89 (1995).PubMedGoogle Scholar
  22. Marietta, M. A., Nitric oxide synthase structure and mechanism.J. Biol. Chem., 268, 12231–12234 (1993).Google Scholar
  23. Miyamoto, K., Kishi, N., Koshiura, R., Yoshida, T., Hatano, T., and Okuda, T., Relationship between the structures and the antitumor activities of tannins.Chem. Pharm. Bull., 35, 814–822 (1987).PubMedGoogle Scholar
  24. Morbidelli, L., Chang, C. H., Douglas, J. G., Granger, H. J., Ledda, F., and Ziche, M., Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium.Am. J. Physiol., 270, H411-H415 (1996).PubMedGoogle Scholar
  25. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.J. Immunol. Methods, 65, 55–63 (1983).PubMedCrossRefGoogle Scholar
  26. Oh, G.-S., Pae, H.-O., Ph, H., Hong, S.-G., Kim, I.-K., Chai, K-Y., Yun, Y.-G., Kwon, T.-O., and Chung, H.-T.,In vitro antiproliferative effect of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells.Cancer Lett., 174, 17–24 (2001).PubMedCrossRefGoogle Scholar
  27. Ono, K., Sawada, T., Murata, Y., Saito, E., Iwasaki, A., Arakawa, Y., Kurokawa, K., and Hashimoto, Y., Pentagalloylglucose, an antisecretory component of Paeoniae radix, inhibits gastric H+, K+-ATPase.Clinica. Chimica. Acta, 290, 159–167 (2000).CrossRefGoogle Scholar
  28. O’Sullivan, M. G., Huggins Jr., E. M., Meade, E. A., DeWitt, D. L., and McCall, C. E., Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages.Biochem. Biophys. Res. Commun., 187, 1123–1127 (1992).PubMedCrossRefGoogle Scholar
  29. Pan, M.-H., Lin, J.-H., Lin-Shiau S.-Y and Lin, J.-K., Induction of apoptosis by penta-O-galloyl-beta-D-glucose through activation of caspase-3 in human leukemia HL-60 cells.Eur. J. Pharmacol., 381, 171–183 (1999).PubMedCrossRefGoogle Scholar
  30. Sachs, G., Chang, H. H., Ravon, E., Schckman, R., Lewin, M., and Saccomani, G. A., Non electrogenic H+ pump in plasma membranes of hog stomach.J. Biol. Chem., 261, 16788–16791 (1976).Google Scholar
  31. Satoh, K., Nagai, F., Ushiyama, K., Yasuda, I, Seto, T., and Kano, I., Inhibition of Na+, K(+)-ATPase by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose, a major constituent of both moutan cortex and Paeoniae radix.Biochem. Parmacol., 53, 611–614 (1997).CrossRefGoogle Scholar
  32. Schlodorff, D., Renal complications of nonsteroidal anti-inflammatory drugs.Kidney Int., 44, 643–653 (1993).CrossRefGoogle Scholar
  33. Schmidt, H. H. and Walter, U., NO at work.Cell, 78, 919–925 (1994).PubMedCrossRefGoogle Scholar
  34. Simon, L. S., Role of regulation of cyclooxygenase-2 during inflammation.Am. J. Med., 106, 37S-42S. (1999).PubMedCrossRefGoogle Scholar
  35. Subbaramaiah, K., Telang, N., Ramonetti, J. T., Araki, R., Devito, B., Weksker, B. B., and Dannenberg, A. J., Transcription of cyclooxygenase-2 is enhanced in transformed mammary epithelial cells.Cancer Res., 56, 4424–4429 (1996).PubMedGoogle Scholar
  36. Szabo, C., Alterations in nitric oxide production in various forms of circulatory shock.New Hortz., 3, 2–32 (1995).Google Scholar
  37. Tsujii, M., Kawano S., and DuBois, R. N., Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential.Proc. Natl. Acad. Sci. USA., 94, 3336–3340 (1997).PubMedCrossRefGoogle Scholar
  38. Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M., and DuBois, R. N., Cyclooxygenase regulates angiogenesis induced by colon cancer cells.Cell, 93, 705–716 (1998).PubMedCrossRefGoogle Scholar
  39. Tunctan, B., Uludag, O., Altug, S., and Abacioglu, N., Effects of nitric oxide synthase inhibition in lipopolysaccharide-induced sepsis in mice.Pharmacol. Res., 38, 405–411 (1998).PubMedCrossRefGoogle Scholar
  40. Vane, J. R., Bakhle, Y S., and Botting, R. M., Cyclooxygenases 1 and 2.Annu. Rev. Pharmacol. Toxicol., 38, 97–120 (1998).PubMedCrossRefGoogle Scholar
  41. Xie, W. Q., Kashiwabara, Y., and Nathan, C., Role of transcription factor NFkB/Rel in induction of nitric oxide synthase.J. Biol. Chem., 269, 4705–4708 (1994).PubMedGoogle Scholar
  42. Ziche, M., Morbidelli, L., Masini, E., Amerini, S., Granger, H. J., Maggi, C. A., Geppetti P., and Ledda, F., Nitric oxide mediates angiogenesisin vivo and endothelial cell growth and migrationin vivo promoted by substance P.J. Clin. Invest., 94, 2036–2044 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2003

Authors and Affiliations

  1. 1.Natural Products Research Institute, College of PharmacySeoul National UniversitySeoulKorea
  2. 2.College of PharmacyChonnam National UniversityGwangjuKorea

Personalised recommendations