Archives of Pharmacal Research

, Volume 26, Issue 10, pp 809–815 | Cite as

Inhibitory activity of flavonoids fromPrunus davidiana and other flavonoids on total ROS and hydroxyl radical generation

  • Hyun Ah Jung
  • Mee Jung Jung
  • Ji Young Kim
  • Hae Young Chung
  • Jae Sue Choi
Research Articles Articles


Since reactive oxygen species (ROS) and hydroxyl radicals (OH) play an important role in the pathogenesis of many human degenerative diseases, much attention has focused on the development of safe and effective antioxidants. Preliminary experiments have revealed that the methanol (MeOH) extract of the stem ofPrunus davidiana exerts inhibitory/scavenging activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, total ROS and peroxynitrites (ONOO-). In the present study, the antioxidant activities of this MeOH extract and the organic solvent-soluble fractions, dichloromethane (CH2CI2), ethyl acetate (EtOAc), and n-butanol (n-BuOH), and the water layer ofP. davidiana stem were evaluated for the potential to inhibit OH and total ROS generation in kidney homogenates using 2′,7′-dichlorodihydrofluorescein diacetate (DCHF-DA), and for the potential to scavenge authentic ONOO-. We also evaluated the inhibitory activity of seven flavonoids isolated fromP. davidiana stem, kaempferol, kaempferol 7-O-β-D-glucoside, (+)-catechin, dihydrokaempferol, hesperetin 5-O-β-D-glucoside, naringenin and its 7-O-β-D-glucoside, on the total ROS, OH and ONOO- systems. For the further elucidation of the structure-inhibitory activity relationship of flavonoids on total ROS and OH generation, we measured the antioxidant activity of sixteen flavonoids available, including three active flavonoids isolated fromP. davidiana, on the total ROS and OH systems. We found that the inhibitory activity on total ROS generation increases in strength with more numerous hydroxyl groups on their structures. Also, the presence of anortho-hydroxyl group, whether on the A-ring or B-ring, and a 3-hydroxyl group on the C-ring increased the inhibitory activity on both total ROS and OH generation.

Key words

Prunus davidiana Antioxidant activity Total reactive oxygen species (ROS) Peroxynitrite (ONOO-Hydroxyl radical (OH) Flavonoids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, B. N., Shigenaga, M. K., and Hage, T. M., Oxidants, antioxidants and the degenerative diseases of aging.Proc. Natl. Acad. Sci. USA, 90, 7915–7922 (1993).PubMedCrossRefGoogle Scholar
  2. Aruoma, O. I., Assessment of potential prooxidant and antioxidant actions,J. Am. Oil Chem. Soc., 73, 1617–1625 (1996).CrossRefGoogle Scholar
  3. Balavoine G. G. and Genleti, Y. V., Peroxynitrite scavenging by different antioxidants, Part I: convenient assay.Nitric Oxide, 3, 40–54 (1999).PubMedCrossRefGoogle Scholar
  4. Beckman, J. S., Beckman, T. W., Chen, J., Marshell, P. A., and Freeman, B. A., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proc. Natl. Acad. Sci., USA, 87, 1620–1624 (1990).PubMedCrossRefGoogle Scholar
  5. Branen, A. L., Toxicology and biochemistry of butylated hydroxy-anisole and butylated hydroxytoluene.J. Am. Oil Chem.Soc., 52, 59–63 (1975).PubMedCrossRefGoogle Scholar
  6. Burda, S. and Oleszek, W., Antioxidant and antiradical activities of flavonoids.J. Agric. Food Chem., 49, 2774–2779 (2001).PubMedCrossRefGoogle Scholar
  7. Choi, J. S., Chung, H. Y, Kang, S. S., Jung, M. J., Kim, J. W., No, J. K. and Jung, H. A., The structure-activity relationship of flavonoids as scavengers of peroxynitrite.Phytochem. Res., 16, 232–235 (2002).Google Scholar
  8. Choi, J. S., Suh, S. S., Young, H. S., and Park, H. J., Hypolipemic and hypoglycemic activities ofPrunus davidiana in high fat-fed rats.Arch. Pharm. Res., 14, 44–47 (1991a).PubMedCrossRefGoogle Scholar
  9. Choi, J. S., Yokozawa, T., and Oura, H., Improvement of hyperglycemia and hyperlipemia in streptozotocin-diabetic rats by a methanolic extract ofPrunus davidiana stems and its main component, prunin.Plant Med., 57, 208–211 (1991b).CrossRefGoogle Scholar
  10. Choi, J. S., Yokozawa, T., and Oura H., Antihyperlipidemic effect of flavonoids fromPrunus davidiana.J. Nat. Prod., 54, 218–224 (1991c).PubMedCrossRefGoogle Scholar
  11. Choi, J. S., Young, H. S., Lee, T. W., Woo, W. S., and Lee, E. B., Chemistry and anti-inflammatory activity ofPrunus davidiana stems.Yakhak Hoeji, 36, 115–119 (1992).Google Scholar
  12. Choi, J. S., Lee, H. J., Park, H. J., and Kim, H. G., Screening of plants and marine algae and its active principles fromPrunus davidiana.Kor. J. Pharmacogn., 24, 299–303 (1993).Google Scholar
  13. Choi, J. S., Park, K. Y., Moon, S. H., Rhee, S. H., and Young, H. S., Antimutagenic effect of plant of flavonoids in theSalmonella assay system.Arch. Pharm. Res., 17, 71–75 (1994).PubMedCrossRefGoogle Scholar
  14. Choi, J. S., Park, S. H., and Choi, J. H., Nitrite scavenging effect by flavonoids and its structure-effect relationship.Arch. Pharm. Res., 12, 26–33 (1989).CrossRefGoogle Scholar
  15. Choi, J. S., Woo, W. S., Young, H. S., and Park, H. S., Phytochemical study onPrunus davidiana.Arch. Pharm. Res., 13, 374–378 (1990).CrossRefGoogle Scholar
  16. Cos, P., Ying, L, Calomme, M., Hu, J. P., Cimanga, K., Poel, B. V., Pieters, L., Vlietinck, A. J., and Berghe, D., Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers.J. Nat. Prod., 61, 71–76 (1998).PubMedCrossRefGoogle Scholar
  17. Dreher, D. and Junod, F., Role of oxygen free radicals in cancer development.Eur. J. Cancer, 32A(1), 30–38 (1996).PubMedCrossRefGoogle Scholar
  18. Griffiths, H. R. and Lunec, J., The C1q binding activity of IgG is modifiedin vitro by reactive oxygen species: implications for rheumatoid arthritis.FEBS Lett., 388, 161–164 (1996).PubMedCrossRefGoogle Scholar
  19. Harbome, F. B. and Williams, C. A., Advances in flavonoid research since 1992.Phytochem., 55, 481–504 (2000).CrossRefGoogle Scholar
  20. Jung, H. A., Kim, A. R., Chung, H. Y., and Choi, J. S.,In vitro antioxidant activity of some selectedPrunus species in Korea.Arch. Pharm. Res., 25, 865–872 (2002).PubMedCrossRefGoogle Scholar
  21. Kooy, N. W., Royall, J. A., Ischiropoulos, H., and Beckman, J. S., Peroxynitrite-mediated oxidation of dihydrorhodamine 123.Free Radic. Biol. Med., 16, 149–156 (1994).PubMedCrossRefGoogle Scholar
  22. Krishnamachari, V., Levine, L., and Paré, P. W., Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging.J. Agric. Food Chem., 50, 4357–4363 (2002).PubMedCrossRefGoogle Scholar
  23. Label, C. P. and Bondy, S. C, Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes.Neurochem. Int., 17, 435–441 (1990).CrossRefGoogle Scholar
  24. Lee, W. R., Shen, S. C., Lin, H. Y., Hou, W. C., Yang, L. L., and Chen, Y C., Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease.Biochem. Pharmacol., 63, 225–236 (2002).PubMedCrossRefGoogle Scholar
  25. Morel, I., Lescoat, G., Cognel, P., Sergent, O., Pasdelop, N., Brissot, P., Cillard, P., and Cillard, J., Antioxidant and iron-chelating activities of the flavonoids, catechin, quercetin and diosmetin, on iron-loaded rat hepatocyte cultures.Biochem. Pharmacol., 45, 13–19 (1993).PubMedCrossRefGoogle Scholar
  26. Nagao, A., Seki, M., and Kobayashi, H., Inhibition of xanthine oxidase by flavonoids.Biosci. Biotechnol. Biochem., 63, 1787–1790 (1999).PubMedCrossRefGoogle Scholar
  27. Park, H. S., Young, H. S., Park, K. Y., Rhee, S. H., Chung, H. Y., and Choi, J. S., Flavonoids from the whole plants ofOrostachysjaponicus.Arch. Pharm. Res., 14, 167–171 (1991).CrossRefGoogle Scholar
  28. Pincemail, J. J., Free radicals and antioxidants in human diseases. In Favier, A. E., Cadet, J., Kalyanaraman, B., Fontecave, M., and Pierre, J.-L.,Analysis of Free radicals in Biological Systems. Birkhauser Verlag, Berlin, pp. 83–98, (1995).Google Scholar
  29. Rice-Evans, C. A., Miller, N., and Paganga, G., Antioxidant properties of phenolic compounds.Trends in Plant Science, 2, 152–159 (1997).CrossRefGoogle Scholar
  30. Rice-Evans, C. A., Miller, N., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids.Free Radic. Biol. Med., 20, 933–956 (1996).PubMedCrossRefGoogle Scholar
  31. Sagar, S., Kallo, I. J., Kaul, N., Ganguly, N. K., and Sharma, B. K., Oxygen free radicals in essential hypertension.Mol. Cell Biochem., 111, 103–108 (1992).PubMedCrossRefGoogle Scholar
  32. Salah, N., Miller, N. J., Paganga, G., Tijburg, L, Bolwell, G. P., and Rice-Evans, C. A., Polyphenolic flavonols as scavengers of aqueous phase radicals and as chain-breaking antioxidants.Arch. Biochem. Biophys., 322, 339–346 (1995).PubMedCrossRefGoogle Scholar
  33. Sawa, T., Akaike, T., and Maeda, H., Tyrosine nitration by per-oxynitrite formed nitric oxide and superoxide generated by xanthine oxidase.J. Biol. Chem., 275(42), 32467–32474 (2000).PubMedCrossRefGoogle Scholar
  34. Singh, A., Chemical and biochemical aspects of activated oxygen: singlet oxygen, superoxide anion, and related species, In Miquel, J., Quintanilha, A. T, and Weber, H. (Eds).CRC Handbook of free radicals and antioxidants in Biomedicine. CRC Press, Inc., Boca Raton, Florida, Vol. 1, pp. 17–28, (1989).Google Scholar
  35. Sohal, R. S., Role of oxidative stress and protein oxidation in the aging process.Free Radic. Biol. Med., 33(1), 37–44 (2002).PubMedCrossRefGoogle Scholar
  36. Squadrito, G. L. and Pryor, W. A., Oxidative chemistry of nitric oxide: the role of superoxide, peroxynitrite, and carbon dioxide.Free Radic. Biol. Med., 25, 392–403 (1998).PubMedCrossRefGoogle Scholar
  37. Ueda, J., Saito, N., Shimazu, Y., and Ozawa, T., A comparison of scavenging abilities of antioxidants against hydroxyl radicals.Arch. Biochem. Biophys., 333, 377–384 (1996).PubMedCrossRefGoogle Scholar
  38. Van Acker, S. A. B. E., Van Balen, G. P., Van den Berg, D. J., Bast, A., and Van der Vijgh, W. J. F., Influence of iron chelation on the antioxidant activity of flavonoids.Biochem. Pharmacol., 56, 935–943 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2003

Authors and Affiliations

  • Hyun Ah Jung
    • 2
  • Mee Jung Jung
    • 1
  • Ji Young Kim
    • 3
  • Hae Young Chung
    • 3
  • Jae Sue Choi
    • 1
  1. 1.Faculty of Food Science and BiotechnologyPukyong National UniversityBusanKorea
  2. 2.Research Institute of Marine Science and TechnologyKorea Maritime UniversityBusanKorea
  3. 3.College of PharmacyPusan National UniversityBusanKorea

Personalised recommendations