Significance of platinum group metals emitted from automobile exhaust gas converters for the biosphere

  • Sonja ZimmermannEmail author
  • Bernd Sures
Review Articles


Intention, Goal, Scope, Background

Following the introduction of automobile catalytic converters the platinum group metals (PGM) platinum (Pt), palladium (Pd) and rhodium (Rh) gain on increasing interest in environmental research as these metals are emitted with exhaust fumes into the environment. Consequently, elevated PGM levels were found in different environmental matrices uch as road dusts, soils along heavily frequented roads, sediments of urban rivers etc. Accordingly, the effects of increasing PGM emissions on the biosphere are controversially discussed.


This paper summarizes the present knowledge on the biological availability of PGM to plants and animals. As biological availability is one of the most decisive factors determining the toxicologi-cal potential of xenobiotics, this information is very important to evaluate the possible threat of the noble metals to ecosystems.

Results and Discussion

The availability of soluble as well as particle bound PGM to terrestrial plants was demonstrated in several studies. Experimental investigations revealed uptake of Pt, Pd and Rh also by aquatic plants. Additionally, the biological availability of the noble metals for animals has been verified in experimental studies using soluble metal salts, catalytic converter model substances, sediments of urban rivers, road dust or tunnel dust as metal sources. These studies refer mainly to aquatic animals. Beside of free living organisms, in particular worms parasitizing fish demonstrated a high potential to accumulate PGM. This could be of great interest in respect of biomonitoring purposes. Generally, for plants as well as for animals Pd turns out to be the best available metal among the PGM. Compared to other heavy metals, the biological availability of PGM from road dust to zebra mussels(Dreissena polymorpha) ranged between that of Cd and Pb.


Especially chronic effects of PGM on the biosphere can not be excluded due to (1) their cumulative increase in the environment, (2) their unexpected high biological availability and bioaccumulation and (3) their unknown toxicological and ecotoxicological potential. However, it appears that acute effects on ecosystems due to anthropogenic PGM emission are not likely.

Recommendation and Outlook

Research on environmental PGM contamination of the biosphere, especially the fauna, and on long-term toxiciry of low PGM concentrations is highly appreciated. These studies require very sensitive analytical techniques to determine PGM even in low sample amounts. Research has to be done in particular on reliable determination of (ultra) trace levels of Pd and Rh as the lack of data on these two metals is mainly due to analytical problems.


Animal bioaccumulation bioavailability palladium plant platinum platinum group metals (PGM) rhodium toxiciry 


  1. Alt F, Bambauer A, Hoppstock K, Mergler B, TölgG (1993) Platinum traces in airborne paniculate matter. Determination of whole content, particle size distribution and soluble platinum. Fresenius J Anal Chem 346, 693–696CrossRefGoogle Scholar
  2. Alt F, Eschnauer HR, Mergler B, Messerschmidt J, TölgG (1997) A contribution to the ecology and enology of platinum. Fresenius J Anal Chem 357, 1013–1019CrossRefGoogle Scholar
  3. Alt F, Jereno U, Messerschmidt J, TölgG (1988) The Determination of Platinum in Biotic and Environmental Materials, I. ug/kg- to g/kg-Range. Mikrochim Acta III, 299–304Google Scholar
  4. Alt F, Weber G, Messerschmidt J, von Bohlen A, Kastenholz B, GüntherK (2002) Speciation of palladium in phytosystems. First results for endive lettuce. Anal Lett 35, 1349–1359CrossRefGoogle Scholar
  5. Artelt S, Creutzenberg O, Kock H, Levsen K, Nachtigall D, HeinrichU, Rühle T, SchlöglR (1999) Bioavailability of fine dispersed platinum as emitted from automotive catalytic converters: a model study. Sci Total Environ 228, 219–242CrossRefGoogle Scholar
  6. Ballach HJ, Alt F, Messerschmidt J, WittigR (2000) Determinants of the phytotoxicity of platinum. In Zereini F, AltF (eds.) Anthropogenic plati- num-group element emission: Their impact on man and environment, 105–114, Springer Verlag Berlin HeidelbergGoogle Scholar
  7. Ballach HJ, Wittig GR (1996) Reciprocal effects of platinum and lead on the water household of poplar cuttings. Environ Sci & Pollut Res 3, 3–9Google Scholar
  8. Bongers J, Bell JU, Richardson DE (1988) Platinum (II) binding to metallothioneins. J Inorg Biochem 34, 55–62CrossRefGoogle Scholar
  9. Bowles JFW, Gize AP, Vaughan DJ, Norris SJ (1995) Organic controls on platinum-group element (PGE) solubility in soils: initial data. Chron Rech Min 520, 65–73Google Scholar
  10. Cosden JM, Schijf J, Byrne RH (2003) Fractionation of platinum group elements in aqueous systems: Comparative kinetics of palladium and platinum removal from seawater byUlva lactuca L. Environ Sci Technol 37, 555–560CrossRefGoogle Scholar
  11. Djingova R, Kovacheva P, Wagner G, MarkenB (2003) Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci Total Environ 308, 235–246CrossRefGoogle Scholar
  12. Eckhardt JD, SchäferJ (1999) Pflanzenverfügbarkeit, Boden - Pflanze Transfer. In Zereini F, AltF (eds.) Emissionen von Platinmetallen: Analytik, Umwelt und Gesundheitsrelevanz, 229–237, Springer Verlag Berlin HeidelbergGoogle Scholar
  13. Ely JC, Neal CR, Kulpa CF, Schneegurt MA, Seidler JA, Jain JC (2001) Implications of platinum-group element accumulation along U.S. roads from catalytic-convener attrition. Environ Sci Technol 35, 3816–3822CrossRefGoogle Scholar
  14. Farago ME, Parsons PJ (1994) The effects of various platinum metal species on the water plantEichhomia crassipes (MART.) Solms. Chem Spec Bioavail 6,1–12Google Scholar
  15. GebelT (2000) Toxicolgy of platinum, palladium, rhodium, and their compounds. In Alt F, ZereiniF (eds) Anthropogenic Platinum-Group-Element Emissions and their Impact on Man and Environment, 245–255, Springer Verlag BerlinGoogle Scholar
  16. Hees T, Wenclawiak B, Lustig S, Schramel P, Schwarzer M, SchusterM, Verstraete D, Dams R, HelmersE (1998) Distribution of platinum group elements (Pt, Pd, Rh) in environmental and clinical matrices: Composition, analytical techniques and scientific outlook. Status report. Environ Sci & Pollut Res 5, 105–111Google Scholar
  17. HelmersE (1997) Platinum emission rate of automobiles with catalytic converters. Comparison and assessment of results from various approaches. Environ Sci & Pollut Res 4, 100–103Google Scholar
  18. Helmers E, MergelN (1997) Platin in belasteten Gräsern: Anstieg der Emissionen aus PKW-Abgskatalysatoren. Erster Trend aus direkten Umweltmessungen (1992-1995). UWSF - Z Umweltchem Ökotox 9, 147–148CrossRefGoogle Scholar
  19. Helmers E, MergelN (1998) Platinum and rhodium in a polluted environment: studying the emissions of automobile catalysts with emphasis on the application of CSV rhodium analysis. Fresenius J Anal Chem 362, 522–528CrossRefGoogle Scholar
  20. Helmers E, Schwarzer M, SchusterM (1998) Comparison of palladium and platinum in environmental matrices: palladium pollution by automobile emissions? Environ Sci & Pollut Res 5, 44–50CrossRefGoogle Scholar
  21. Hoppstock K, SuresB (2004) Platinum-Group Metals. In: Merian E, Anke M, Ihnat M, StoepplerM (eds). Elements and their compounds in the environment. Wiley-VCH, Weinheim, Germany, 1047–1086CrossRefGoogle Scholar
  22. Jarvis K, Parry SJ, Piper JM (2001) Temporal and spatial studies of autocata-lyst-derived platinum, rhodium, and palladium and selected vehicle-derived trace elements in the environment. Environ Sci Technol 35, 1031–1036CrossRefGoogle Scholar
  23. Jensen KH, Rauch S, Morrison GM, LindbergP (2002) Platinum group elements in the feathers of raptors and their prey. Arch Environ Contamin Toxicol 42, 338–347CrossRefGoogle Scholar
  24. Johnson Matthey (2002) Platinum 2002. Johnson Matthey Public Limited Company, LondonGoogle Scholar
  25. Jouhaud R, Biagianti-Risbourg S, VernetG (1999a) Atteintes ultrastructurales intestinales induites par une concentration subléthale de platine chez le téléostéenBrachydanio rerio. Bull Soc Zool Fr 124, 111–116Google Scholar
  26. Jouhaud R, Biagianti-Risbourg S, VernetG (1999b) Effets du platine chezBrachydanio rerio (Téléostéen, Cyprinidé). I. Toxicité aiguë; bioaccumu- lation et histopathologie intestinales. J Applied Ichthyol 15, 41- 48CrossRefGoogle Scholar
  27. Klueppel K, Jakubowski N, Messerschmidt J, Stuewer D, KlockowD (1998) Speciation of platinum metabolites in plants by size-exclusion chroma- tography and inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 13, 255–262CrossRefGoogle Scholar
  28. Klueppel K, Jakubowski N, StuewerD (1999) Platin-Speziation in pflanzlichen Materialien mittels HPLC-ICP-MS. In Zereini F, AltF (eds.) Emissionen von Platinmetallen: Analytik, Umwelt und Gesundheitsrelevanz, 27–34, Springer Verlag, Berlin, HeidelbergGoogle Scholar
  29. Laschka D, Nachtwey M, Wäber M, Died C, PeichlL (1999) Biomonitoring verkehrsbedingter Platin-Immissionen, in Zereini F, AltF (eds.) Emissionen von Platinmetallen: Analytik, Umwelt und Gesundheitsrelevanz, 181- 189, Springer Verlag Berlin HeidelbergGoogle Scholar
  30. Lustig S, Michalke B, Beck W, SchramelP (1998b) Platinum speciation with hyphenated techniques: high performance liquid chromatography and capillary electrophoresis on-line coupled to an inductively coupled plasma-mass spectrometer - Application to aqueous extracts from a platinum treated soil. Fresenius J Anal Chem 360, 18–25CrossRefGoogle Scholar
  31. Lustig S, SchramelP (2000) Platinum bioaccumulation in plants and overwiew of the situation for palladium and rhodium. In Zereini F, AltF (eds.) Anthropogenic platinum-group element emission: Their impact on man and environment, 95–104, Springer Verlag Berlin HeidelbergGoogle Scholar
  32. Lustig S, Zang S, Beck W, SchramelP(1998a) Dissolution of metallic platinum as water soluble species by naturally occurring complexing agents. Mikrochim Acta 129, 189–194Google Scholar
  33. Lustig S, Zang S, Michalke B, Schramel P, BeckW (1996) Transformation behaviour of different platinum compounds in a clay-like humic soil: speciation investigations. Sci Total Environ 188, 195–204CrossRefGoogle Scholar
  34. Lustig S, Zang S, Michalke B, Schramel P, BeckW (1997) Platinum determination in nutrient plants by inductively coupled plasma mass spectrometry with special respect to the hafnium oxide interference. Fresenius J Anal Chem 357, 1157–1163CrossRefGoogle Scholar
  35. Messerschmidt J, Alt F, TölgG (1994) Platinum species analysis in plant material by gel permeation chromatography. Anal Chim Acta 291,161–167CrossRefGoogle Scholar
  36. Moldovan M, Palacios MA, Gomez MM, Morrison G, RauchS, McLeod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, SchramelP, Zischka M, Pettersson C, Wass U, Luna M, Saenz JC, SantamariaJ (2002) Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Sci Total Environ 296, 199–208CrossRefGoogle Scholar
  37. Moldovan M, Rauch S, Gómez MM, Palacios MA, Morrison GM (2001) Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopodAsellus aquaticus. Water Res 35, 4175–4183CrossRefGoogle Scholar
  38. Moore W, Hysell D, Hall L, Campell K, StaraJ (1975a) Preliminary studies on the toxicity and metabolism of palladium and platinum. Environ Health Persp 10, 63–71CrossRefGoogle Scholar
  39. Moore W, Malanchuk M, Crocker W, Hysell D, Cohen A, Stara JF (1975b) Whole body retention in rats of different ’191Pt compounds following inhalation exposure. Environ Health Persp 12, 35–39CrossRefGoogle Scholar
  40. Nielson KB, Atkin CL, Winge DR (1985) Distinct metal-binding configurations in metallothionein. J Biol Chem 260:5342–5350Google Scholar
  41. Palacois MA, Gómez MM, Moldovan M, Morrison G, Rauch S, McLeod C, Ma R, Laserna J, Lucena P, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Lustig S, Zischka M, Wass U, Stenbom B, Luna M, Saenz JC, Santamaria J, Torrens JM (2000) Platinum-group elements: quantification in collected exhaust fumes and studies of catalyst surfaces. Sci Total Environ 257, 1–15CrossRefGoogle Scholar
  42. Rauch S, Morrison GM (1999) Platinum uptake by the freshwater isopodAsellus aquaticus in urban rivers. Sci Total Environ 235, 261–268CrossRefGoogle Scholar
  43. Rauch S, Morrison GM (2000) Routes for Bioaccumulation and Transformation of Platinum in the Urban Environment. In Alt F, Zereini F (eds.) Anthropogenic Platinum-Group-Element Emissions and their Impact on Man and Environment, 85–93, Springer Verlag, Berlin, HeidelbergGoogle Scholar
  44. Ravindra K, Bencs L, Van Grieken R (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318, 1–43CrossRefGoogle Scholar
  45. Renner H, Schmuckler G (1991) Platinum-Group Metals, in Merian E (ed.) Metals and their compounds in the environment, 1135–1151, VCH Verlagsgesellschaft mbH WeinheimGoogle Scholar
  46. Schäfer J (1998) Einträge und Kontaminationspfade Kfz-emittierter Platin- Gruppen-Elemente (PGE) in verschiedenen Umweltkompartimenten. PhD thesis, University of Karlsruhe, GermanyGoogle Scholar
  47. Schäfer J, Hannker D, Eckhardt JD, Stuben D (1998) Uptake of traffic- related heavy metals and platinum group elements (PGE) by plants. Sci Total Environ 215, 59–67CrossRefGoogle Scholar
  48. Schuster M, Schwarzer M, Risse G (1999) Bestimmung von Palladium in Umweltkompartimenten. In Zereini F, Alt F (eds.) Emissionen von Platin- metallen: Analytik, Umwelt und Gesundheitsrelevanz, 55–66, Springer Verlag Berlin HeidelbergGoogle Scholar
  49. Sures B (2002) Charakterisierung aquatischer Wirt-Parasit-Interaktionen aus ökologischer und (öko-)toxikologischer Sicht. Habilitation thesis, University of Karlsruhe, GermanyGoogle Scholar
  50. Sures B (2003) Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitology 126, S53-S60CrossRefGoogle Scholar
  51. Sures B (2004) Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends in Parasitology (in press)Google Scholar
  52. Sures B, Thielen F, Zimmermann S (2002a) Untersuchungen zur Bioverfügbarkeit Kfz-emittierter Platingruppenelemente (PGE) für die aquatische Fauna unter besonderer Berücksichtigung von Palladium. UWSF - Z Umweltchem Ökotox 14, 30–36Google Scholar
  53. Sures B, Zimmermann S, Messerschmidt J, von Bohlen A (2002b) Relevance and analysis of traffic related platinum group metals (Pt, Pd, Rh) in the aquatic biosphere, with emphasis on Palladium. Ecotoxicology 11, 385–392CrossRefGoogle Scholar
  54. Sures B, Zimmermann S, Messerschmidt J, von Bohlen A, AltF (2001) First report on the uptake of automobile catalyst emitted Palladium by European eels(Anguilla anguilla) following experimental exposure to road dust. Environ Pollut 113, 341–345CrossRefGoogle Scholar
  55. Sures B, Zimmermann S, Sonntag C, Stuben D, Taraschewski H (2003) The acanthocephalanParatenuisentis ambiguus as a sensitive indicator of the precious metals Pt and Rh emitted from automobile catalytic converters. Environ Pollut 122, 401–405CrossRefGoogle Scholar
  56. Vaughan GT, Florence TM (1992) Platinum in the human diet, blood, hair and excreta. Sci Total Environ 111, 47–58CrossRefGoogle Scholar
  57. Veltz I, Arsac F, Biagianti-Risbourg S, Habets F, Lechenault H, Vemet G (1996) Effects of platinum (Pt4+) onLubriculus variegatus Müller (Annelida, Oligochaetae): acute toxicity and bioaccumulation. Arch Environ Contam Toxicol 31, 63–67CrossRefGoogle Scholar
  58. Veltz I, Arsac F, Bouillot J, Collery P, Habets F, Lechenault H, Paicheler JC, Vernet G (1994) Ecotoxicological study of platinum using anexperimental food chain. Preliminary results. In Collery P, Poirier LA, Littlefield NA, Etienne JC (eds.): Metal Ions in Biology and Medicine, 241–245, John Libbey Eurotext ParisGoogle Scholar
  59. Verstraete D, Riondato J, Vercauteren J, Vercauteren J, Vanhaecke F, Moens L, Dams R, Verloo M (1998) Determination of the uptake of [Pt(NH3)4](NO3)2 by grass cultivated on a sandy loam soil and by cucumber plants, grown hydroponically. Sci Total Environ 218, 153–160CrossRefGoogle Scholar
  60. Wäber M, Laschka D, Peichl L (1996) Biomonitoring verkehrsbedingter Platin-Immissionen - Verfahren der standardisierten Graskultur im Untersuchungsgebiet München. UWSF - Z Umweltchem Ökotox 8, 3–7CrossRefGoogle Scholar
  61. WHO (1991) Environmental health criteria 125 - Platinum. World Health Organization, Geneva, SwissGoogle Scholar
  62. WHO (2002) Environmental health criteria 226 - Palladium. World Health Organization, Geneva, SwissGoogle Scholar
  63. Zereini F, Alt F (2000) Anthropogenic platinum-group element emission: Their impact on man and environment, Springer Verlag Berlin Heidelberg, GermanyGoogle Scholar
  64. Zereini F, Alt F, Rankenburg K, Beyer JM, Artelt S (1997) Verteilung von Platingruppenelementen (PGE) in den Umweltkompartimenten Boden, Schlamm, Straßenstaub, Straßenkehrgut und Wasser. UWSF - Z. Umweltchem Ökotox 9, 193–200CrossRefGoogle Scholar
  65. Zereini F, Skerstupp B, Alt F, Helmers E, Urban H (1997) Geochemical behaviour of platinum-group elements (PGE) in particulate emissions by automobile exhaust catalysts: Experimental results and environmental investigations. Sci Total Environ 206, 137–146Google Scholar
  66. Zhang BL, Sun WY, Tang WX (1997) Determination of the association constant of platinum(II) to metallothionein. J Inorg Biochem 65, 295–298CrossRefGoogle Scholar
  67. Zhang Q, Zhong W, Xing B, Tang W, Chen Y (1998) Binding properties and stoichiometries of a palladium(II) complex to metallothioneinsin vivo andin vitro. J Inorg Biochem 72, 195–200CrossRefGoogle Scholar
  68. Zhong W, Zhang Q, Yan Y, Yue S, Zhang B, Tang W (1997a) Interaction of sodium chloroplatinate and iproplatin with metallothioneinin vivo. J Inorg Biochem 66, 159–164CrossRefGoogle Scholar
  69. Zhong W, Zhang Q, Yan Y, Yue S, Zhang B, Tang W (1997b) Reaction of a Platinum(IV) Complex with Native Cd, Zn-Metallothionein in vitro. J Inorg Biochem 66, 179–186CrossRefGoogle Scholar
  70. Zimmermann S (2002) Untersuchungen zur Analytik und biologischen Verfügbarkeit der Platingruppenelemente Platin, Palladium und Rhodium. PhD thesis, University of Karlsruhe, GermanyGoogle Scholar
  71. Zimmermann S, Alt F, Messerschmidt J, von Bohlen A, Taraschewski H, Sures B (2002) Biological availability of traffic-related platinum-group elements (palladium, platinum, and rhodium) and other metals to the zebra mussel(Dreissena polymorpha) in water containing road dust. Environ Toxicol Chem 21, 2713–2718CrossRefGoogle Scholar
  72. Zimmermann S, Baumann U, Taraschewski H, Sures B (2004) Accumulation and distribution of platinum and rhodium in the European eelAnguilla anguilla following exposure to metal salts. Environ Pollut 127, 195–202CrossRefGoogle Scholar
  73. Zimmermann S, Menzel CM, Berner Z, Eckhardt JD, Stuben D, Alt F, Messerschmidt J, Taraschewski H, Sures B (2001) Trace analysis of platinum in biological samples: a comparison between sector field ICP-MS and adsorptive cathodic stripping voltammetry following different digestion procedures. Anal Chim Acta 439, 203–209CrossRefGoogle Scholar
  74. Zimmermann S, Messerschmidt J, von Bohlen A, Sures B (2003) Determination of the platinum group metals Pt, Pd and Rh in biological samples by electrothermal atomic absorption spectrometry as compared with adsorptive cathodic stripping voltammetry and total reflection X-ray fluo- rescence analysis. Anal Chim Acta 498, 93–104CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 2004

Authors and Affiliations

  1. 1.Zoologisches Institut I, Ökologie-Parasitologie, Geb. 07.01Universität KarlsruheKarlsruheGermany

Personalised recommendations