Dendroremediation of trinitrotoluene (TNT) part 1: Literature overview and research concept

Literature Overview

Abstract

Background, Aim and Scope

For decades, very large areas of former military sites have been contaminated diffusely with the persistent nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). The recalcitrance of the environmental hazard TNT is to a great extent due to its paniculate soil existence, which leads to slow but continuous leaching processes. Although improper handling during the manufacture of TNT seems to be a problem of the past in developed countries, environmental deposition of TNT and other explosives is still going on unfortunately, resulting from thousands of unexploded ordnance or low order explosions at munitions test areas and at current battlefields.

Objective

Sustainable phytoremediation strategies for explosives in Germany, which intend to use trees to decontaminate soil and groundwater (‘dendroremediation’), have to consider that most of the former German military sites are already covered with woodlands, mainly with conifer stands. Therefore, parallel investigation of the remediation potential is necessary for both of the selected hybrids of fast growing broadleaf trees, which are waiting for planting and forest conifers, which have already proven for decades that they are able to grow on explosive contaminated sites.

Main Features

A short literature review is given regarding phytoremediation of TNT with herbaceous plants and some general aspects of dendroremediation are discussed. Furthermore, an overview of our TNT-dendroremediation research network is introduced, which has the strategic goal to make dendroremediation more calculable for a series of potent trees for site-adaptedin situ application and for the assessment of tree remediation potentials in natural attenuation processes.

Results and Discussion

Some of our methods, results and conclusions yet unpublished are presented. For a preliminary calculation of area-related annual TNT dendroremediation potential of five-year-old trees, the following values were assessed:Salix EW-13 6.0,Salix EW-20 8.5,Popuius ZP-007 4.2,Betula pendula 5.2, Picea abies 1.9 andPinus sylvestris 0.8 g m-2 a-1. For a 45-year-old spruce forest, an annual natural attenuation potential of 4.2 g TNT m-2 a-1 was found.

Conclusion, Recommendations and Perspective

Our main results deliver quantitative proposals for dendroremediation strategiesin situ and provide decision aids. Also aspects of growth of raw materials for energy production are considered. Our dendroremediation research concept for TNT and its congeners can be easily completed for other trees of interest and it can also be applied to herbaceous plants. Knowing the current bottlenecks of phytoremediation and considering the known environmental behaviour of other contaminants, elements of our methodological approach may be easily adapted to those pollutant groups, e.g. for pesticides, pharmaceuticals, PAHs, chlorinated recalcitrants and, with some restrictions, to inorganics and to multiple contaminations. Our dynamical dendrotolerance test systems will help to predict tree growth on polluted areas. To provide some light into the black box of TNT dendroremediation, experimental data regarding the uptake, distribution and degradation of [14C]-TNT in mature tree tissues will be reported in the second part of this publication.

Keywords

Coniferous tree deciduous tree dendroremediation explosives natural attenuation nitroaromatic compounds phytoremediation soil decontamination TNT (2,4,6-trinitrotoluene) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Preuss J, Haas R (1987): Die Standorte der Pulver-, Sprengstoff- Kampf- und Nebelstofferzeugung im ehemaligen Deutschen Reich. Geogr Rundsch 39, 578–584Google Scholar
  2. [2]
    Haas R, Krippendorf A, von Löw E (2003): Bodenkontaminationen in Rüstungsaltlasten aus dem Ersten Weltkrieg. UWSF - Z Umweltchem Ökotox 15, 69–70Google Scholar
  3. [3]
    Pennington JC (1989): Soil sorption and plant uptake of 2,4,6- trinitrotoluene. Diss Abst Int Pt B - Sci and Eng 49 (12)Google Scholar
  4. [4]
    Hewitt DD, Walsh ME (2003): On-site processing and sub- sampling of surface soil samples for the analysis of explosives. U.S. Army Corps of Engineers, report ERDC/CRREL TR-03-14, August 2003,26 pp http://www.crrel.usace.army.mil/techpub/CRREL Reports/reports/TR03-14.pdf (Web access, April 2004)Google Scholar
  5. [5]
    Pennington JC, Jenkins TF, Brannon, JM, Lynch J, Ranney, TA, Berry TE, Hayes CA, Miyares PH, Walsh ME, Hewitt AD, Perron N, Delfino JJ (2001): Distribution and fate of energetics on DoD test and training ranges: Interim Report 1. ERDC TR-01-13, U.S. Army Engineer Research and Development Center, Vicksburg, MS. http://www.wes.armv.mil/el/elpubs/pdf/trO 1-13.pdf (Web access, April 2004)Google Scholar
  6. [6]
    Radtke CW, Gianorto D, Roberto FF (2002): Effects of particulate explosives on estimating contamination at a historical explosives testing area. Chemosphere 46, 3–9CrossRefGoogle Scholar
  7. [7]
    Radtke CW, Smith DM, Owen GS, Roberto FF (2002): Field demonstration of acetone pretreatment and composting of particulate-TNT-contaminated soil. Bioremed J 6, 191–204CrossRefGoogle Scholar
  8. [8]
    Walsh ME, Ramsey CA, Jenkins TF (2002): The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. Chemosphere 49, 1267–1273CrossRefGoogle Scholar
  9. [9.
    Schröder P, Fischer C, Debus R, Wenzel A (2003): Reaction of detoxification mechanisms in suspension cultured spruce cells(Picea abies L. KARST.) to heavy metals in pure mixture and in soil eluates. ESPR - Environ Sci & Pollut Res 10, 225–234CrossRefGoogle Scholar
  10. [10]
    Talmage SS, Opresko DM, Maxwell CJ, Welsh CJE, Cretalla MF, Reno PH, Daniel FB (1999): Nitroaromatic munition compounds: Environmental effects and screening values. Rev Environ Contam Toxicol 161, 1–156Google Scholar
  11. [11]
    Frische T, Höper H (2003): Soil microbial parameters and luminescent bacteria assays as indicators for in situ bioremediation of TNT-contaminated soils. Chemosphere 50, 415–427CrossRefGoogle Scholar
  12. [12]
    Zakikhani M, Dortch MS, Gerald JA (2002): Compilation of physical and chemical properties and toxicity benchmarks for military range compounds. Report ERDC/EL TR-02-27, U.S. Army Engineer Research and Development Center, Vicksburg, MS. http://www.wes.armv.mil/el/elpubs/pdf/trelO2-27.pdf (Web access, April 2004)Google Scholar
  13. [13]
    Schäfer RK (2002): Evaluation of the ecotoxicological threat of ammunition derived compounds to the habitat function of soil. PhD thesis, Freie Universität Berlin, Dept. of Biology, Chemistry and Pharmacy, hrtp://www.diss.fu-berlin.de/2002/ 57/index.html (Web access, April 2004)Google Scholar
  14. [14]
    Hund-Rinke K, Kordel, W, Hennecke, D, Achazi R, Warnecke D, Wilke B-M, Winkel B, Heiden S (2002): Bioassays for the ecotoxicological and genotoxicological assessment of contaminated soils (Results of a Round-Robin test) - Part II: Assessment of the habitat function of Soils-Tests with soil microflora and fauna. JSS - J Soils & Sediments 2, 83–90Google Scholar
  15. [15]
    Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003): Phytotoxicity of 2,4,6-trini- trotoluene (TNT) and octahydro-l,3,5,7-tetranitro-l,3,5,7- tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Contam Toxicol 44, 198–209CrossRefGoogle Scholar
  16. [16]
    Snellinx Z, Nepovim A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002): Biological remediation of explosives and related nitroaromatic compounds. ESPR - Environ Sci & Pollut Res 9, 48–61Google Scholar
  17. [17]
    Trapp S (2000): Aspekte der Phytoremediation organischer Schadstoffe. UWSF - Z Umweltchem Ökotox 12, 246–255Google Scholar
  18. [18]
    Trapp S, Karlson U (2001): Aspects of phytoremediation of organic pollutants. JSS - J Soils & Sediments 1, 37–43Google Scholar
  19. [19]
    USEPA (US Environmental Protection Agency) (1999): Phytoremediation resource guide. EPA report 542-B-99-003, June 1999, 56 pp, http://www.clu-in.orp/download/remed/ phytoresgude.pdf (Web access, April 2004)Google Scholar
  20. [20]
    USEPA (US Environmental Protection Agency) (2000): Introduction to phytoremediation. EPA-Report EPA/600/R-99/107, 93 pp, http://clu-in.org/download/remed/introphyto.pdf (Web presence, April 2004)Google Scholar
  21. [21]
    Schnoor, JL (1998): Phytoremediation. Technology evaluation report to the Ground-Water Remediation Technologies Analysis Center. GWRTAC, E Series, TE-98-01 http://www.gwrtacorg/pdf/phyto e.pdf (Web access, April 2004)Google Scholar
  22. [22]
    Harvey PJ, Campanella BF, Castro PML, Harms H, Lichtfouse E, Schaeffner AR, Smrcek S, Werck-Reichhart D (2002): Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. ESPR - Environ Sci & Pollut Res, 9, 29–47Google Scholar
  23. [23]
    McCutcheon S, Schnoor JL (2003):Phytoremediation: Transformation and control of contaminants. John Wiley & Sons, January 2003, 880 pp, ISBN: 0471394351Google Scholar
  24. [24]
    Thompson PL, Ramer LA, Schnoor JL (1998): Uptake and transformation of TNT by hybrid poplar trees. Environ Sci Technol 32, 975–980CrossRefGoogle Scholar
  25. [25]
    Burken JG, Shanks JV, Thompson PL (2000): Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In Spain JC, Hughes JB, Knackmuss H-J (Eds.): Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, USA, pp 240–275Google Scholar
  26. [26]
    Rivera R, Medina VF, Larson SL, McCutcheon SC (1998): Phytotreatment of TNT-contaminated groundwater. J Soil Contam 7, 511–529CrossRefGoogle Scholar
  27. [27]
    Wang C, Lyon DY, Hughes JB, Bennett GN (2003): Role of hydroxylamine intermediates in the phytotransformation of 2,4,6-trinitrotoluene byMyriophyllum aquaticum. Environ Sci Technol 37, 3595–3600CrossRefGoogle Scholar
  28. [28]
    Gorge E (1993): Aufnahme von 2,4,6-Trinitrotoluol (TNT) in Pflanzen unter besonderer Berücksichtigung von Freilandversuchen auf dem Gelände einer ehemaligen Sprengstofffabrik in Stadtallendorf. PhD thesis, Philipps-University Marburg, GermanyGoogle Scholar
  29. [29]
    Palazzo AJ, Leggett DC (1983): Toxicity, uptake, translocation, and metabolism of TNT by plants. US Army Medical Research and Development Command. Fort Derrick, MD.Google Scholar
  30. [30]
    Palazzo AJ, Leggett DC (1986): Effect and disposition of TNT in a terrestrial plant. J Environ Qual 15, 49–52CrossRefGoogle Scholar
  31. [31]
    Sens C (1998): Metabolisierung und Lokalisierung von14C- Trinitrotoluol (TNT) inPhaseolus vulgaris (Buschbohne) undTriticum aestivum (Weizen). PhD thesis, Philipps-University Marburg, Germany, 155 pp.Google Scholar
  32. [32]
    Sens C, Scheidemann P, Klunk A, Werner D (1998): Distribution of14C-TNT and derivatives in different biochemical compartments ofPhaseolus vulgaris. ESPR - Environ Sci & Pollut Res 5, 202–208Google Scholar
  33. [33]
    Cataldo DA, Harvey SD, Fellows RJ, Bean RM, McVeety BD (1989): An evaluation of the environmental fate and behavior of munitions material (TNT, RDX) in soil and plant systems. Pacific Northwest Laboratories, Richland, Report AD-A223, 546 U.S. DOE Contract 90-012748Google Scholar
  34. [34]
    Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1990): Analysis of 2,4,6-trinitrotoluene and its transformation products in soil and plant tissues by high-performance liquid chromatog- raphy. J Chromatogr 518, 361–374CrossRefGoogle Scholar
  35. [35]
    Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1991): Fate of the explosive hexahydro-l,3,5-trinitro-l,3,5-triazine (RDX) in soil and bioaccumulation in bush bean hydroponic plants. Environ Toxicol Chem 10, 845–855CrossRefGoogle Scholar
  36. [36]
    Sens C, Scheidemann P, Werner D (1999): The distribution of14C-TNT in different biochemical compartments of the monocotyledonousTriticum aestivum. Environ Pollut 104, 113–119CrossRefGoogle Scholar
  37. [37]
    Thome PG (1999): Fate of explosives in plant tissues contaminated during phytoremediation. CRREL Special Report 99-19 http://www.crrel.usace.armv.mil/techpub/CRRELReports/reports/SR99 19.pdf (Web access, April 2004)Google Scholar
  38. [38]
    Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997): Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31, 266–271CrossRefGoogle Scholar
  39. [39]
    Vanderford M, Shanks JV, Hughes JB (1997): Phytotransformation of trinitrotoluene (TNT) and distribution of metabolic products inMyriophyllum aquaticum. Biotechnol Lett 19, 277–280CrossRefGoogle Scholar
  40. [40]
    Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999): Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems ofMyriophyllum aquaticum. Environ Sci Technol 33, 3354–3361CrossRefGoogle Scholar
  41. [41]
    Medina, VF, Larson SL, McCutcheon SC (2002): Evaluation of continuous flow-through phytoreactors for the treatment of TNT-contaminated water. Environ Progress 21, 29–36CrossRefGoogle Scholar
  42. [42]
    Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998): Transformation of 2,4,6-trinitrotoluene by the aquatic plantMyriophyllum spicatum. Environ Toxicol Chem 17, 2266–2273CrossRefGoogle Scholar
  43. [43]
    Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999): Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland treatments. Removal, mass balances and fate in ground water of TNT and RDX. Chemosphere 38, 3383–3396CrossRefGoogle Scholar
  44. [44]
    Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999): Environmental behavior of explosives in ground- water from the Milan Army Ammunition Plant in aquatic and wetland treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39, 2057–2072CrossRefGoogle Scholar
  45. [45]
    Wayment DG, Bhadra R, Lauritzen J, Hughes JB, Shanks JV (1999): A transient study of formation of conjugates during TNT metabolism by plant tissues. Int J Phytoremed 1, 227–239CrossRefGoogle Scholar
  46. [46]
    Pavlostathis SG, Jackson GH (2002): Biotransformation of 2,4,6-trinitrotoluene in a continuous-flowAnabaena sp. system. Water Res 36, 1699–1706CrossRefGoogle Scholar
  47. [47]
    Lucero ME, Mueller W, Hubstenberger J, Phillips GC, O’Connell MA (1999): Tolerance to nitrogenous explosives and metabolism of TNT by cell suspensions ofDatura innoxia. In Vitro Cellular & Developm Biol -Plant 35, 480–486CrossRefGoogle Scholar
  48. [48]
    Scheidemann P, Klunk A, Sens C, Werner D (1998): Species dependent uptake and tolerance of nitroaromatic compounds by higher plants. J Plant Physiol 152, 242–247Google Scholar
  49. [49]
    Schoenmuth B, Lyr H, Burth, U (1997): Dekontamination schadstoffbelasteter Böden mit Hilfe selektierter Pflanzenarten bzw. -sorten mit hoher metabolischer Entgiftungskapazität. Verbundvorhaben Biologische Sanierung von Rüstungsalt- 278Google Scholar
  50. [50]
    lasten, 3. Stacussetninar 26-27 February 1997 Berlin; Vortrag M, 11 S., http://www.dendroremediation.de/bericht2002/ 1997-drittes-statusseminar/Statusl997-06-korr.pdf (Web presence, June 2002)Google Scholar
  51. [50]
    Price RA, Pennington JC, Larson SL, Neumann D, Hayes CA (2002): Uptake of RDX and TNT by agronomic plants. J Soil Contam 11, 307–326CrossRefGoogle Scholar
  52. [51]
    Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV (2001): Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44, 1259–1264CrossRefGoogle Scholar
  53. [52]
    Just CL, Schnoor JL (2000): A preparation technique for analysis of explosives in plant tissues. Int J Phytorem 2, 255–267CrossRefGoogle Scholar
  54. [53]
    Groom CA, Halasz A, Paquet L, Olivier L, Dubois C, Hawari J (2002): Accumulation of HMX (octahydro-l,3,5,7-tetranitri- 1,3,5,7-tetrazocine) in indigenous and agricultural plants grown in HMX-contaminated anti-tank firing-range soil. Environ Sci Technol 36, 112–118CrossRefGoogle Scholar
  55. [54]
    Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1993): Analysis of the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) in bush bean plants. Chromatogr 630, 167–177CrossRefGoogle Scholar
  56. [55]
    Nguyen PV, Kielbaso JJ, Williams JR, Burick JC (2002): Phytoremediation at tree level: Assessment of heavy metal tolerance of different species and sources of willows. 2002 Annual Meetings of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. Nov. 11-15 Indianapolis, Indiana http://forestry.msu.edu/ dendro/ASApaper2002a.pdf (Web access, April 2004)Google Scholar
  57. [56]
    Nguyen PV, Kielbaso JJ (2002): Dendroremediation definition http://forestrv.msu.edu/dendro/definition.htm (Web access, April 2004)Google Scholar
  58. [57]
    Hedge RS, Fletcher JS (1996): Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32, 2471–2479CrossRefGoogle Scholar
  59. [58]
    Lyr H, Fiedler H-J, Tranquilini W (eds.) (1992): Physiologie und Ökologie der Gehölze. Gustav Fischer Verlag, Jena, StuttgartGoogle Scholar
  60. [59]
    Jordahl JL, Foster L, Schnoor JL, Alvarez PJJ (1997): Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16, 1318–1321CrossRefGoogle Scholar
  61. [60]
    Tesar M, Reichenbauer TG, Sessitsch A (2002): Bacterial rhizo- sphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol & Biochem 34, 1883–1892CrossRefGoogle Scholar
  62. [61]
    Schoenmuth B (1996): Dekontamination schadstoffbelasteter Böden mit Hilfe speziell selektierter Pflanzenarten bzw. -sorten mit hoher metabolischer Entgiftungskapazität. TV 6 im BMBF- Verbundvorhaben ‘Biologische Sanierung von Rüstungsaltlasten’, FKZ 14 50 85 8 3, Abschlussbericht, 39 S. http://www.dendroremediation.de/bericht2002/berichtl996/abschluss bericht!996.pdf (Web presence, June 2002)Google Scholar
  63. [62]
    Yoon JM, Oh BT, Just CL, Schnoor JL (2002): Uptake and leaching of octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine by hybrid poplar trees. Environ Sci Technol. 36, 4649–4655CrossRefGoogle Scholar
  64. [63]
    Thompson PL, Ramer LA, Schnoor JL (1999): Hexahydro- l,3,5-trinitro-l,3,5-triazine translocation in poplar trees. Environ Toxicol Chem 18, 279–284CrossRefGoogle Scholar
  65. [64]
    Dobner I (2003): Der Einsatz mykorrhizierter Gehölze in biologischen Sanierungsverfahren unter dem Aspekt TNT-belas- teter Böden. PhD thesis, University Bremen, 190 pp. http://elib.suuh.uni-bremen.de/publications/dissertations/E-Diss696 dobner.pdf (Web access, April 2004)Google Scholar
  66. [65]
    Tranquillini W (1992): Kap. 5. Wasserhaushalt In: Lyr H, Fiedler H-J, Tranquillini W. (Hrsg.). Physiologie und Ökologie der Gehölze. ISBN 3-334-00397-3, Gustav Fischer Verlag, Jena, StuttgartGoogle Scholar
  67. [66]
    Allen SJ, Hall RL, Rosier PTW (1999): Transpiration by two poplar varieties grown as coppice for biomass production. Tree Physiol 19, 493–501Google Scholar
  68. [67]
    Trapp S, Zambrano KC, Kusk KO, Karlson U (2000): A phy- totoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39, 154–160CrossRefGoogle Scholar
  69. [68]
    Wittig R, Ballach H-J, Kuhn A(2003): Impact studies on PAHs. 1. Exposure of the roots ofPoputus nigra L. cv. Loenen to PAHs and its effect on growth and water balance. ESPR - Environ Sci & Pollut Res 10, 235–244CrossRefGoogle Scholar
  70. [69]
    Thompson PL, Ramer LA, Guffey AP, Schnoor JL (1998): Decreased transpiration in poplar trees exposed to 2,4,6-trini- trotoluene. Environ Toxicol Chem 17, 902–906CrossRefGoogle Scholar
  71. [70]
    Trapp S, Köhler A, Larsen LC, Zambrano KC, Karlson U (2001): Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. JSS - J Soils & Sediments 1, 71–76CrossRefGoogle Scholar
  72. [71]
    Koehler H, Frische T, Dobner I, Behrend P, Schaefer M, Taubner H, Jastorff B, Warrelmann J, Walter U (2001a): Erprobung und Erfolgskontrolle eines Phyroremediarionsver-fahrens zur Sanierung Sprengstoff-kontaminierter Böden. Teil II: Ergebnisse eines Freilandexperiments. UWSF - Z Umwelt- chem Ökotox 13, 291–300Google Scholar
  73. [72]
    Koehler H, Warrelmann J, Behrend P, Dobner I, Frische T, Heyser W, Jastorff B, Walter U (2001b): Erprobung und Erfolgskontrolle eines Phytoremediationsverfahrens zur Sanierung Sprengstoff-kontaminierter Böden: Teil III. Beurteilung des Verfahrens. UWSF - Z Umweltchem Ökotox 13, 359–368Google Scholar
  74. [73]
    Koehler H, Warrelmann J, Frische T, Behrend P, Walter U (2002): In-situ phytoremediation of TNT-contaminated soil. Acta Biotechnol 22, 67–80CrossRefGoogle Scholar
  75. [74]
    UFT Bremen (2002): The remediation project ‘Tanne’. http:// www.uft.uni-bremen.de/tanne (Web access, April 2004)Google Scholar
  76. [75]
    Warrelmann J, Behrend P, Koehler H (2000): Monitoring TNT- content of soil during phytoremediation. Proceedings of ConSoil 2000 Leipzig/Germany, 18-22 September 2000, 1176–1177Google Scholar
  77. [76]
    Warrelmann J, Koehler H, Frische T, Dobner I, Walter U, Heyser W (2000): Erprobung und Erfolgskontrolle eines Phytoremediationsverfahrens zur Sanierung Sprengstoff-kontaminierter Böden. Teil I: Konzeption und Einrichtung eines Freilandexperimentes. UWSF - Z Umweltchem Ökotox 12, 351–357Google Scholar
  78. [77]
    Schoenmuth BW, Pestemer W (2004): Dendroremediation of trinitrotoluene (TNT). Part 2: Fate of radio-labelled TNT in trees. ESPR - Environ Sci & Pollut Res, Online First, DOI http://dx.doi.Org/10.1065/espr2004.06.209.2Google Scholar

Copyright information

© Ecomed Publishers 2004

Authors and Affiliations

  1. 1.Institute for Ecotoxicology and Ecochemistry in Plant ProtectionFederal Biological Research Centre for Agriculture and Forestry (BBA)BerlinGermany

Personalised recommendations