The ECO-indicator 98 explained

LCA methodology

Abstract

The Eco-Indicator 98 project aims at a complete revision of the Eco-Indicator 95 methodology. Like its predecessor, the target is to develop single scores for designers. The method now includes resources and land use. Important improvements are: the use of fate analysis, the much better definition of the damage categories concerned with human health and ecosystem health, using the PAF (Potentially Affected Fraction) and DALY (Disability Adjusted Life Years) concept, and a completely new approach to modelling resources and land use. Perhaps the most fundamental improvement is the management system for value choices. The result of this management system is that there will be three instead of one indicator. Each version is based on a different cultural perspective. The method should be updated continuously. It is proposed to set up an independent organisation to guide this future development.

Keywords

DALY concept damage categories Disability Adjusted Life Years (DALY) Eco-Indicator 98 ecosystem health fate analysis human health land use management system for value choices modelling resources and land use PAF concept Potentially Affected Fraction (PAF) resources, supply of safeguard subjects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunschweig, A;Förster, R;Hofstetter, P;Müller-Wenk, R. (1996): Developments in LCA Valuation. IWOE Diskussions-beitrag Nr. 32, St. GallenGoogle Scholar
  2. Brunner, St. (1998): Panel Methods and their Application for Weighting in LCA. UNS Working Paper for the Project Environmental Prioritising within the Framework of the Swiss Priority Programme Environment; ETH ZurichGoogle Scholar
  3. Chapman, P.F.;Roberts, F. (1983): Metal Resources and Energy. Butterworths Monographs in MaterialsGoogle Scholar
  4. Cambell, C.J.;Laherrère, J.H. (1998): The End of Cheap Oil. Scientific American, March 1998, pp 60–65Google Scholar
  5. Deffeyes, K. (1964): Uranium Distribution in Mined Deposits and in the Earth Crust. Department of Energy, Grand Junction Colorado; see also Scientific American 242, 1980, p 50Google Scholar
  6. EUSES (1996):Jager, D.T. et al.: EUSES the European Union System for the Evaluation of Substances. National Institute of Public Health and the Environment (RIVM), The Netherlands; Available from the European Chemicals Bureau (EC/JRC), Ispra, ItalyGoogle Scholar
  7. ExternE (1997): Core project. Extension of the Accounting Framework; Final Report, Compiled byMayerhover, P.;Krewitt, W.;Friedrich, R. The European Commission, Contract JOS3-CT95-0002 Stuttgart (available on www.ExternE.jrc.sp)Google Scholar
  8. Frischknecht, R. (1998): Life Cycle Inventory Analysis for Decision Making. Dissertation ETH Nr. 12599, ISBN 3-9520661-3-3, ETH ZurichGoogle Scholar
  9. Goedkoop, M.J. (1995): De Eco-Indicator 95. Final report; NOH report 9523; PRé Consultants; Amersfoort (NL); ISBN 90-72130-77-4Google Scholar
  10. Gomez, J.D. (1998): Approach for the Use of the Eco-Indicator 98 Concept in Latin America. MSc Thesis; IHE; DelftGoogle Scholar
  11. Guinée, J. et al. (1996): LCA Impact Assessment of Toxic Releases. Product Policy Report 1996/21, Ministry of Environment (VROM), The HagueGoogle Scholar
  12. Hofstetter, P. (1998): Perspectives in Life Cycle Impact Assessment; A Structured Approach to Combine Models of the Technosphere, Ecosphere and Valuesphere., Kluwers Academic Publishers, 1998, Info: www.wkap.nl/book.htm/07923-8377-XKortman, J.G.M.;Lindeijer, E.W.;Sas, H.;Sprengers, M. (1994): Towards a Single Indicator for Emissions. IDES (IVAM-er) AmsterdamGoogle Scholar
  13. Köllner, T. (1998): Life-Cycle Impact Assessment for Land Use. Effect Assessment Taking the Attribute Biodiversity into Account. IWÖ Discussion Paper, unpublished first draft, 29.8.98, University St. GallenGoogle Scholar
  14. Meent, D.;Klepper, O. (1997): Mapping the Potential Affected Fraction (PAF) of Species as an Indicator of Generic Toxic Stress. RIVM report 607504001, June 1997; RIVM. BilthovenGoogle Scholar
  15. Müller-Wenk, R. (1996): Damage Categories and Damage Functions as Core Elements of Life-Cycle Impact Assessment. IWOE Diskussionsbeitrag. 36 (Draft version 29.10.1996, Universität St. GallenGoogle Scholar
  16. Müller-Wenk, R. (1998-1): Depletion of Abiotic Resources Weighted on the Base of “Virtual” Impacts of Lower Grade Deposits in Future. IWÖ Diskussionsbeitrag Nr. 57, Universität St. Gallen, March 1998, ISBN 3-906502-57-0Google Scholar
  17. Müller-Wenk, R. (1998-2): Land Use — The Main Threat to Species. IWOE Discussion Paper no. 64, IWOE University of St. GallenGoogle Scholar
  18. Murray, Chr.;Lopez, A. (1996): The Global Burden of Disease. WHO, World Bank and Harvard School of Public Health. BostonGoogle Scholar
  19. Potting, J.;Hauschild, M.;Wenzel, H. (1998): “Less is better” and “Only above Threshold”: Two Incompatible Paradigms for Human Toxicity in Lifecycle Assessment? Int. J. LCA, in print for issue 6, 1998Google Scholar
  20. Spriensma, R. (1997): Working Document on Fate Analysis for the Eco-Indicator 97. In: EUSES, Internal Working Document, PRé ConsultantsGoogle Scholar
  21. Steen, B.;Ryding, S.O. (1992): The EPS Enviro-Accounting Method. IVL, B-1080 GothenburgGoogle Scholar
  22. Thompson, M.;Ellis, R.;Wildavsky, A.: Cultural Theory, Westview Print Boulder 1990Google Scholar
  23. Wiertz J. van Dijk &J.B. Latour (1992); MOVE: Vegetatie-module; de kans op voorlomen van 700 plantensoorten als functie van vocht, pH, nutrienten en zout. RIVM rapport nr. 711901006. BilthovenGoogle Scholar

Copyright information

© Ecomed Publishers 1998

Authors and Affiliations

  1. 1.PRé ConsultantsBB-AmersfoortThe Netherlands
  2. 2.ETH-UNSZurich
  3. 3.IWÖ-HSGSt. Gallen

Personalised recommendations