A special view on the nature of the allocation problem

  • Reinout Heijungs
  • Rolf Frischknecht
LCA methodology


One of the remaining important problems of life cycle inventory analysis is the allocation problem. A proper solution of this problem calls for a proper understanding of the nature of the problem itself. This paper argues that the established definition of the allocation problem as the fact that one unit process produces more than one function, is not appropriate. That definition points to an important reason of the occurrence of the problem, but the situation of internal (closed-loop) recycling already indicates that there may be product systems which contain multifunction processes, but which nevertheless need not exhibit an allocation problem. The paper proceeds by examining a number of simple hypothetical cases, and proposes a precise and operational definition of the allocation problem. This enables a systematic categorization of approaches for dealing with the allocation problem.


Allocation problem algorithmetic procedures LCA methodology allocation problem algorithmetic procedures matrix inversion allocation problem LCA methodology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous (1998): Environmental management. Life cycle assessment. Goals and scope definition and inventory analysis. Final Draft, ISOGoogle Scholar
  2. Azapagic, A. (1996): Environmental system analysis: the application of linear programming to life cycle assessment. Volume I, Ph.D.-thesis, University of Surrey, GuildfordGoogle Scholar
  3. Braunschweig, A., R. Forster,P. Hofstetter &R. Müller-Wenk (1996): Developments in LCA valuation. IWÖ, St. GallenGoogle Scholar
  4. Chenery, H.B. &P.G. Clark (1959): Interindustry economics. John Wiley & Sons, LondonGoogle Scholar
  5. Consoli, F., D. Allen,I. Boustead,J. Fava,W. Franklin,A.A. Jensen,N. de Oude,R. Parrish,R. Perriman,D. Postlethwaite,B. Quay,J. Seguin &B. Vigon (1993): Guidelines for life-cycle assessment: a “Code of Practice”. Edition 1, SETAC, Brussels/PensacolaGoogle Scholar
  6. Debreu, G. (1959): Theory of value. An axiomatic analysis of economic equilibrium. John Wiley & Sons, Inc., New YorkGoogle Scholar
  7. Ekvall, T. (1992): Life-cycle analyses of corrugated cardboard. A comparitive analysis of two existing studies. CIT, GöteborgGoogle Scholar
  8. Fava, J.A., R. Denison,B. Jones,M.A. Curran,B. Vigon,S. Selke &J. Barnum (1991): A technical framework for life-cycle assessments. SETAC, WashingtonGoogle Scholar
  9. Fecker, I. (1992): How to calculate an ecological balance? EMPA, St. GallenGoogle Scholar
  10. Finnveden, G. &G. Huppes (1995): Life cycle assessment and treatment of soild waste. Avfallforskningsrådet, StockholmGoogle Scholar
  11. Fleischer, G. &W.-P. Schmidt (1996): Functional unit for systems using natural eaw materials. International Journal of Life Cycle Assessment 1 (1), 23–27CrossRefGoogle Scholar
  12. Frischknecht, R., P. Hofstetter,I. Knoepfel,E. Walder,R. Dones &E. Zollinger (1994): Ökoinventare für Energiesysteme. Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. 1. Auflage, Bundesamt für Energiewirtschaft, BernGoogle Scholar
  13. Frischknecht, R. &P. Kolm (1995): Modellansatz und Algorithmus zur Berechnung von Ökobilanzen im Rahmen der Datenbank ECOINVENT. In:Schmidt &Schorb (1995), p. 79–95Google Scholar
  14. Frischknecht, R. (1997): Goal and scope definition and inventory analysis. In:Udo de Haes &Wrisberg (1997), p. 59–88Google Scholar
  15. Frischknecht, R. (1998a): Life cycle inventory analysis for decisionmaking. Scope-dependent inventory system Models and context-specific joint product allocation. Ph.D.-Thesis, ETH Zürich, ZürichGoogle Scholar
  16. Frischknecht, R. (1998b): Allokation in der Sachbilanz bei starrer Kuppelproduktion. In:Frischknecht &Hellweg (1998), p. 42–53Google Scholar
  17. Frischknecht, R. &S. Hellweg (Eds.) (1998): Ökobilanz-Allokationsmethoden. Modelle aus der Kosten- und Produktionstheorie sowie praktische Probleme in der Abfallwirtschaft. Unterlagen zum 7. Diskussionsforum Ökobilanzen vom 24. Juni 1998, 2. überar-beitete Auflage, ETH, ZürichGoogle Scholar
  18. Georgescu-Roegen, N. (1951): The aggregate linear production function and its applications to Von Neumann’s economic model. In:Koopmans (1951b), p. 98–115Google Scholar
  19. Ginsburgh, V.A. &J.L. Waelbroeck (1981): Activity analysis and general equilibrium modelling. North-Holland Publishing Company, AmsterdamGoogle Scholar
  20. Golub, G.H. &C.F. van Loan (1993): Matrix Computations. Second Edition, The John Hopkins University Press, BaltimoreGoogle Scholar
  21. Heijungs, R., J.B. Guinee,G. Huppes,R.M. Lankreijer,H.A. Udo de Haes,A. Wegener Sleeswijk,A.M.M. Ansems,P.G. Ecgels,R. van Duin &H.P. de Goede (1992): Environmental life cycle assessment of products. I: Guide — October 1992, II: Backgrounds — October 1992, CML, LeidenGoogle Scholar
  22. Heijungs, R. (1994): A generic method for the identification of options for cleaner products. Ecological Economics 10 (1), 69–81CrossRefGoogle Scholar
  23. Heijungs, R. (1996): On the identification of key issues for further investigation in life-cycle screening. The use of mathematical tools and statistics for sensitivirv analyses. Journal of Cleaner Production 4 (3/4), 159–166CrossRefGoogle Scholar
  24. Heijungs, R. (1997): Economic drama and the environmental stage. Derivation of formal tools for environmental analysis and decision-support from a unified epistemological principle. Ph.D.-thesis, Rijksuniversiteit Leiden, LeidenGoogle Scholar
  25. Hofstetter, P. (1996): Towards a structured aggregation procedure. A multi-step approach for aggregation that includes methodologies and information supplied by environmental and social sciences. In:Braunschweig et al. (1996), p. 123–211Google Scholar
  26. Huppes, G. (1994): A general method for allocation in LCA. In:Huppes &Schneider (1994), p. 74–90Google Scholar
  27. Huppes, G. &F. Schneider (1994): Proceedings of the European workshop on allocation in LCA. CML, LeidenGoogle Scholar
  28. Huppes, G. &R. Frischknecht (1995): Allocation in waste management. A position paper. In:Finnveden &Huppes (1995), p. 64–77Google Scholar
  29. Konijn, P.J.A. (1994): The make and use of commodities by industries. On the compilation of input-output data from the national accounts. Faculteit Bestuurskunde, Universiteit Twente, EnschedeGoogle Scholar
  30. Koopmans, T.C. (1951a): Analysis of production as an efficient combination of activities. In:Koopmans (1951b), p. 33–97Google Scholar
  31. Koopmans, T.C. (Ed.) (1951b): Activity analysis of production and allocation. John Wiley & Sons, New YorkGoogle Scholar
  32. Lindfors, L.-G., K. Christiansen,L. Hoffman,Y. Virtanen,V. Juntilla,A. Leskinen,O.-J. Hanssen,A. Ronning,T. Ekvall &G. Finnveden (1995): LCA-Nordic. Technical reports No 1-9, Nordic Council of Ministers, CopenhagenGoogle Scholar
  33. Möller, F.-J. (1992): Ökobilanzen erstellen und anwenden. Entwicklung eines Unrersuchungsmodells für die Umweltverträglichkeit von Verpackungen. Ecobalance Applied Research, MünchcnGoogle Scholar
  34. Neumann, J. von (1945/1946): A model of general economic equilibrium. Review of Economic Studies 13 (1945/1946), 1–9Google Scholar
  35. Oenning, A. (1997): Theorie betrieblicher Kuppelproduktion. Physica-Verlag, HeidelbergGoogle Scholar
  36. Press, W.H., B.P. Flannery,S.A. Teukolsky &W.T. Vetterling (1992): Numerical recipes in Pascal. The art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  37. Raa, T. ten, D. Chakraborty &J.A. Small (1984): An alternative treatment of secondary products in input-output analysis. The Review of Economics and Statistics 66 (1), 88–97CrossRefGoogle Scholar
  38. Raa, T. ten (1988): An alternative treatment of secondary products in input-output analysis: frustration. The Review of Economics and Statistics 70 (3), 535–538CrossRefGoogle Scholar
  39. Rijckeghem, W. van (1967): An exact method for determining the technology matrix in a situation with secondary products. Review of Economics and Statistics 49, 607–608CrossRefGoogle Scholar
  40. Rosenbluth, G. (1968): Input-output analysis. A critique. Statistische Hefte 9 (4), 255–268CrossRefGoogle Scholar
  41. Saxton, J.C. &R.U. Ayres (1975): The materials-process product model. Theory and apllications. In:Vogely (1975), p. 178–244Google Scholar
  42. Schmidt, M. &A. Schorb (1995): Stoffstromanalysen in Ökobilanzen und Öko-audits. Springer, BerlinGoogle Scholar
  43. Stewart, G.W. &J. Sun (1990): Matrix perturbation theory. Academic Press, Inc., BostonGoogle Scholar
  44. Udo de Haes, H.A. &N. Wrisberg (1997): Life cycle assessment. State-of-the-art and research priorities. Results of LCANET, a concerted action in the Environment and Climate Programme (DGXII), Eco-Informa Press, BayreuthGoogle Scholar
  45. Vogely, W.A. (Ed.) (1975): Mineral materials modeling. A state-of-the-art review. John Hopkins University Press, BaltimoreGoogle Scholar

Copyright information

© Ecomed Publishers 1998

Authors and Affiliations

  • Reinout Heijungs
    • 1
  • Rolf Frischknecht
    • 2
  1. 1.Centre of Environmental ScienceLeiden UniversityLeidenThe Netherlands
  2. 2.ESU-servicesUsterSwitzerland

Personalised recommendations